Войти
Автомобильный портал - Двигатель. Замена свечей. Подсветка. Права и вождение
  • Можно ли с помощью анализа крови определить рак, какие виды
  • Значение анализов при диагностике рака крови
  • Что делать, если обнаружено ДНК уреаплазмы парвум?
  • Уреаплазма парвум Как расшифровать анализ на уреаплазмоз 5
  • Мануальная терапия: показания и противопоказания, приемы, отзывы Что такое мануальщик
  • MPV в анализе крови что означает?
  • Двигатель внешнего сгорания история создания. Двигатель внешнего сгорания- принцип работы и достоинства

    Двигатель внешнего сгорания история создания. Двигатель внешнего сгорания- принцип работы и достоинства

    - тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

    Хронологию событий, связанную с разработкой двигателей времен 18 века, вы можете наблюдать в интересной статье - "История изобретения паровых машин" . А эта статья посвящена великому изобретателю Роберту Стирлингу и его детищу.

    История создания...

    Патент на изобретение двигателя Стирлинга как ни странно принадлежит шотландскому священнику Роберту Стирлингу. Его он получил 27 сентября 1816 года. Первые «двигатели горячего воздуха» стали известны миру ещё в конце XVII века, задолго до Стирлинга. Одним из важных достижений Стирлинга является добавление очистителя, прозванный им же самим "экономом".


    В современной же научной литературе этот очиститель имеет совсем другое название - «рекуператор». Благодаря ему производительность двигателя растет, поскольку очиститель удерживает тепло в тёплой части двигателя, а рабочее тело в то же время охлаждается. Благодаря этому процессу эффективность системы значительно возрастает. Рекуператор представляет из себя камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа). Газ, проходит через наполнитель рекуператора в одну сторону, отдаёт (или приобретает) тепло, а при движении в другую сторону отбирает (отдаёт) его. Рекуператор может быть и внешним по отношению к цилиндрам и может быть размещён на поршне-вытеснителе в бета- и гамма-конфигурациях. Габариты и вес машины в этом случае меньше. В коей мере роль рекуператора выполняется зазором между вытеснителем и стенками цилиндра (если цилиндр длинный, то надобности в таком устройстве нет вообще, однако появляются значительные потери из-за вязкости газа). В альфа-стирлинге рекуператор может быть только внешним. Он монтируется последовательно с теплообменником, в котором со стороны холодного поршня, происходит нагрев рабочего тела.

    В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 % инвестировала фирма "Филипс". Поскольку двигатель Стирлинга имеет много преимуществ, то в эпоху паровых машин он был широко распространён.

    Недостатки.

    Материалоёмкость - основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.

    Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела - водород, гелий.

    Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплообменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.

    Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

    Преимущества.

    Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.

    «Всеядность» двигателя - как все двигатели внешнего сгорания (вернее - внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.

    Простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.

    Увеличенный ресурс - простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.

    Экономичность - в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.

    Бесшумность двигателя - стирлинг не имеет выхлопа, а значит - не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).

    Экологичность - сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

    Альтернатива паровым двигателям.

    В 19 веке инженеры пытались создать безопасную альтернативу паровым двигателям того времени, из-за того что котлы уже изобретенных двигателей часто взрывались, не выдерживая высокого давления пара и материалов, которые совсем не подходили для их изготовления и постройки. Двигатель Стирлинга стал хорошей альтернативой, поскольку он мог преобразовывать в работу любую разницу температур. В этом и заключается основной принцип работы двигателя Стирлинга. Постоянное чередование нагревания и охлаждения рабочего тела в закрытом цилиндре приводит поршень в движение. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. Но так же проводились опыты и с водой. Главная особенность двигателя Стирлинга с жидким рабочим телом является малые размеры,большие рабочие давления и высокая удельная мощность. Также существует Стирлинг с двухфазным рабочим телом. Удельная мощность и рабочее давление в нем тоже достаточно высоки.

    Возможно, из курса физики вы помните, что при нагревании газа его объём увеличивается, а при охлаждении - уменьшается. Именно это свойство газов и заложено в основе работы двигателя Стирлинга. Двигатель Стирлинга использует цикл Стирлинга, который не уступает циклу Карно по термодинамической эффективности, и в некотором роде даже обладает преимуществом. Цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация такого цикла сложна и малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах.

    Всего в цикле Стирлинга четыре фазы, разделённые двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. При переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, который находится в цилиндре. В ходе этого процесса изменяется давление из чего и можно получить полезную работу. Полезная работа производится только за счет процессов, проходящих с постоянной температурой, то есть зависит от разницы температур нагревателя и охладителя, как в цикле Карно.

    Конфигурации.

    Инженерами подразделяются двигатели Стирлинга на три различных типа:

    Превью - увеличение по клику.

    Содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень - горячий, другой - холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, а цилиндр с холодным поршнем находится в более холодном теплообменнике. Отношение мощности к объёму достаточно велико, однако высокая температура «горячего» поршня создаёт определённые технические проблемы.

    Бета-Стирлинг - цилиндр один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.

    Есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

    Двигатели внешнего сгорания стали использоваться тогда, когда людям потребовался мощный и экономичный источник энергии. До этого использовались паровые установки, однако они были взрывоопасными, так как использовали горячий пар под давлением. В начале 19 века им на смену пришли устройства с внешним сгоранием, а еще через несколько десятков лет были изобретены уже привычные приборы с внутренним сгоранием.

    Происхождение устройств

    В 19 веке человечество столкнулось с проблемой, которая заключалась в том, что паровые котлы слишком часто взрывались, а также имели серьезные конструктивные недостатки, что делало их использование нежелательным. Выход был найден в 1816 году шотландским священником Робертом Стирлингом. Эти устройства можно также называть "двигателями горячего воздуха", которые применялись еще в 17 веке, однако этот человек добавил к изобретению очиститель, называющийся в настоящее время регенератором. Таким образом, двигатель внешнего сгорания Стирлинга был способен сильно повысить производительность установки, так как он сохранял тепло в теплой рабочей зоне, в то время как рабочее тело охлаждалось. Из-за этого эффективность работы всей системы была значительно увеличена.

    В то время изобретение использовалось достаточно широко и находилось на подъеме своей популярности, однако со временем его перестали использовать, и о нем забыли. На смену оборудованию внешнего сгорания пришли паровые установки и двигатели, но уже привычные, с внутренним сгоранием. Вновь о них вспомнили лишь в 20 веке.

    Работа установки

    Принцип работы двигателя внешнего сгорания заключается в том, что в нем постоянно чередуются два этапа: нагревание и охлаждение рабочего тела в замкнутом пространстве и получение энергии. Данная энергия возникает из-за того, что постоянно изменяется объем рабочего тела.

    Чаще всего рабочим веществом в таких устройствах становится воздух, однако возможно использование еще и гелия или водорода. В то время пока изобретение находилось на стадии разработки, в качестве опытов использовались такие вещества, как двуокись азота, фреоны, сжиженный пропан-бутан. В некоторых образцах пытались применять даже обычную воду. Стоит отметить, что двигатель внешнего сгорания, который запускали с водой в качестве рабочего вещества, отличался тем, что у него была достаточно высокая удельная мощность, высокое давление, а сам он был достаточно компактным.

    Первый тип двигателя. «Альфа»

    Первой моделью, которая использовалась, стала «Альфа» Стирлинга. Особенность его конструкции состоит в том, что она имеет два силовых поршня, находящихся в разных в раздельных цилиндрах. Один из них имел достаточно высокую температуру и был горячим, другой, наоборот, холодным. Внутри теплообменника с высокой температурой располагалась горячая пара цилиндр-поршень. Холодная пара находилась внутри теплообменника с низкой температурой.

    Основными преимуществами теплового двигателя внешнего сгорания стало то, что они имели высокую мощность и объем. Однако температура горячей пары при этом была слишком велика. Из-за этого возникали некоторые технические трудности в процессе изготовления таких изобретений. Регенератор данного устройства находится между горячей и холодной соединительными трубками.

    Второй образец. «Бета»

    Вторым образцом стала модель «Бета» Стирлинга. Основное конструктивное отличие заключалось в том, что имелся лишь один цилиндр. Один из его концов выполнял роль горячей пары, а другой конец оставался холодным. Внутри данного цилиндра перемещался поршень, с которого можно снимать мощность. Также внутри имелся вытеснитель, который отвечал за изменение объема горячей рабочей зоны. В данном оборудовании использовался газ, который перекачивался из холодной зоны в горячую через регенератор. Этот вид двигателя внешнего сгорания обладал регенератором в виде внешнего теплообменника или же совмещался с поршнем-вытеснителем.

    Последняя модель. «Гамма»

    Последней разновидностью данного двигателя стала «Гамма» Стирлинга. Этот тип отличался не только наличием поршня, а также вытеснителя, а еще и тем, что в его конструкцию входили уже два цилиндра. Как и в первом случае один из них был холодным и использовался он для отбора мощности. А вот второй цилиндр, как в предыдущем случае, был холодным с одного конца и горячим с другого. Здесь же перемещался вытеснитель. В поршневом двигателе внешнего сгорания также имелся регенератор, который мог быть двух типов. В первом случае он был внешним и соединял между собой такие конструктивные части, как горячую зону цилиндра с холодной, а также с первым цилиндром. Второй тип - это внутренний регенератор. Если использовался этот вариант, то он входил в конструкцию вытеснителя.

    Использование Стирлингов обосновано в том случае, если необходим простой и небольшой преобразователь тепловой энергии. Также его можно использовать в том случае, если разница температур недостаточно велика, чтобы использовать газовые или же паровые турбины. Стоит отметить, что на сегодняшний день такие образцы стали использоваться чаще. К примеру, используются автономные модели для туристов, которые способны работать от газовой конфорки.

    Применение устройств в настоящее время

    Казалось бы, что такое старое изобретение не может использоваться в наши дни, однако это не так. NASA заказало двигатель внешнего сгорания типа Стирлинга, однако в качестве рабочего вещества должны использоваться ядерные и радиоизотопные источники тепла. Кроме этого, он также успешно может быть использован в следующих целях:

    • Использовать такую модель двигателя для перекачки жидкости гораздо проще, чем обычный насос. Во многом это благодаря тому, что в качестве поршня можно применять саму перекачиваемую жидкость. Кроме того, она же и будет охлаждать рабочее тело. К примеру, такой вид "насоса" можно использовать, чтобы накачивать воду в ирригационные каналы, используя для этого солнечное тепло.
    • Некоторые изготовители холодильников склоняются к установке таких устройств. Стоимость продукции удастся снизить, а в качестве хладагента можно применять обычный воздух.
    • Если совместить двигатель внешнего сгорания этого типа с тепловым насосом, то можно оптимизировать работу тепловой сети в доме.
    • Довольно успешно Стирлинги используются на подводных лодках ВМС Швеции. Дело в том, что двигатель работает на жидком кислороде, который впоследствии используется для дыхания. Для подводной лодки это очень важно. К тому же такое оборудование обладает достаточно низким уровнем шума. Конечно, агрегат достаточно большой и требует охлаждения, но именно эти два фактора несущественны, если речь идет о подводной лодке.

    Преимущества использования двигателя

    Если во время конструирования и сборки применить современные методы, то удастся поднять коэффициент полезного действия двигателя внешнего сгорания до 70%. Использование таких образцов сопровождается следующими положительными качествами:

    • Удивительно, однако крутящий момент в таком изобретении практически не зависит от скорости вращения коленчатого вала.
    • В данном силовом агрегате отсутствуют такие элементы, как система зажигания и клапанная система. Также здесь отсутствует распредвал.
    • Достаточно удобно то, что на протяжении всего периода использования не потребуется проводить регулировку и настройку оборудования.
    • Данные модели двигателя не способны "заглохнуть". Простейшая конструкция аппарата позволяет использовать его достаточно продолжительное время в полностью автономном режиме.
    • В качестве источника энергии можно использовать практически все, начиная от дров и заканчивая урановым топливом.
    • Естественно, что в двигателе внешнего сгорания процесс сжигания веществ осуществляется снаружи. Это способствует тому, что топливо дожигается в полном объеме, а количество токсических выбросов минимизируется.

    Недостатки

    Естественно, что любое изобретение не лишено недостатков. Если говорить о минусах таких двигателей, то они заключаются в следующем:

    1. Из-за того что сгорание осуществляется вне двигателя, отвод получаемого тепла происходит через стенки радиатора. Это вынуждает увеличивать габариты устройства.
    2. Материалоемкость. Для того чтобы создать компактную и эффективную модель двигателя Стирлинг, необходимо иметь качественную жаропрочную сталь, которая сможет выдержать большое давление и высокую температуру. Кроме того, должна быть низкая теплопроводность.
    3. В качестве смазки придется покупать специальное средство, так как обычное коксуется при высоких температурах, которые достигаются в двигателе.
    4. Для получения достаточно высокой удельной мощности придется использовать либо водород, либо гелий в качестве рабочего вещества.

    Водород и гелий в качестве топлива

    Получение высокой мощности, конечно же, необходимо, однако нужно понимать, что использование водорода или гелия достаточно опасно. Водород, к примеру, сам по себе достаточно взрывоопасен, а при высоких температурах он создает соединения, которые называются металлогидритами. Это происходит, когда водород растворяется в металле. Другими словами, он способен разрушить цилиндр изнутри.

    Кроме того, и водород, и гелий - это летучие вещества, которые характеризуются высокой проникающей способностью. Если говорить проще, то они достаточно легко просачиваются сквозь практически любые уплотнения. А потери вещества означают потери в рабочем давлении.

    Роторный двигатель внешнего сгорания

    Сердце такой машины - это роторная машина расширения. Для двигателей с внешним типом сгорания этот элемент представлен в виде полого цилиндра, который с обеих сторон прикрыт крышками. Сам по себе ротор имеет вид колеса, который посажен на вал. Также у него имеется определенное количество П-образных выдвигающихся пластин. Для их выдвижения используется специальное выдвижное устройство.

    Двигатель внешнего сгорания Лукьянова

    Юрий Лукьянов - это научный сотрудник Псковского политехнического института. Он уже достаточно давно занимается разработкой новых моделей двигателей. Ученый старался сделать так, чтобы в новых моделях отсутствовали такие элементы, как коробка передач, распредвал и выхлопная труба. Основной недостаток устройств Стирлинга заключался в том, что они имели слишком большие габариты. Именно этот недостаток ученому и удалось устранить за счет того, что лопасти были заменены на поршни. Это помогло уменьшить размер всей конструкции в несколько раз. Некоторые говорят о том, что можно сделать двигатель внешнего сгорания своими руками.

    Из прошлого - в будущее! В 1817 году шотландский священник Роберт Стирлинг получил… патент на новый тип двигателя, названный впоследствии, подобно моторам Дизеля, именем изобретателя - стирлинг. Прихожане маленького шотландского местечка уже давно и с явным подозрением косились на своего духовного пастыря. Еще бы! Шипение и грохот, проникавшие через стены сарая, где частенько пропадал отец Стирлинг, могли смутить не только их богобоязненные умы. Ходили упорные слухи, что в сарае содержится страшный дракон, которого святой отец приручил и вскармливает летучими мышами и керосином.

    Но Роберта Стирлинга, одного из просвещеннейших людей Шотландии, не смущала неприязнь паствы. Мирские дела и заботы все больше и больше занимали его, в ущерб служению господу: увлекали пастора… машины.

    Британские острова в тот период переживают промышленную революцию: стремительно развиваются мануфактуры. И служители культа не остаются равнодушными к громадным доходам, которые сулит новый способ производства.

    С благословения церкви и не без помощи фабрикантов несколько машин Стирлинга были построены, и лучшая из них, в 45 л. с., три года проработала на шахте в Дунди.

    Дальнейшее развитие Стирлингов задержалось: в 60-х годах прошлого столетия на арену вышел новый двигатель Эриксона.

    В обеих конструкциях было много общего. Это были двигатели внешнего сгорания. И в той и в другой машине рабочим телом был воздух, и в той и в другой основой двигателя являлся регенератор, проходя через который отработанный горячий воздух отдавал все тепло. Свежая же порция воздуха, просачиваясь через плотную металлическую сетку, отбирала это тепло, перед тем как попасть в рабочий цилиндр.

    По схеме на рисунке 1 можно проследить, как воздух через всасывающую трубу 10 и клапан 4 попадает в компрессор 3, сжимается и через клапан 5 выходит в промежуточный резервуар. В это время золотник 8 перекрывает выхлопную трубу 9, и воздух через регенератор попадает в рабочий цилиндр 1, нагреваемый топкой 11. Здесь воздух расширяется, совершая полезную работу, которая частично направлена на поднимаемый тяжелый поршень, частично - на сжатие холодного воздуха в компрессоре 3. Опускаясь, поршень выталкивает отработанный воздух через регенератор 7 и золотник 8 в выхлопную трубу. При опускании поршня в компрессор засасывается свежая порция воздуха.

    1 - рабочий цилиндр, 2 - поршень; 3 - компрессор; 4 - всасывающий клапан; 5 - нагнетательный клапан; 6 - промежуточный резервуар; 7 - регенератор; 8 - перепускной золотник; 9 - выхлопная труба; 10 - всасывающая труба; 11 -топка.

    И та и другая конструкции не отличались экономичностью. Зато неполадок с двигателем шотландца случалось почему-то больше, и он был менее надежным, чем двигатель Эриксона. Быть может, именно поэтому просмотрели одну очень важную деталь: при равных мощностях двигатель Стирлинга был компактнее. Кроме того, он имел существенное преимущество в термодинамике…

    Сжатие, нагрев, расширение, охлаждение - вот четыре основных процесса, необходимых для работы любого теплового двигателя. Каждый из них можно проводить разными путями. Скажем, нагрев и охлаждение газа можно вести в замкнутой полости постоянного объема (изохорный процесс) или под движущимся поршнем при постоянном давлении (изобарный процесс). Сжатие или расширение газа может происходить при постоянной температуре (изотермический процесс) или без теплообмена с окружающей средой (адиабатический процесс). Составляя замкнутые цепочки из различных комбинаций таких процессов, нетрудно получить теоретические циклы, по которым работают все современные тепловые двигатели. Скажем, комбинация из двух адиабат и двух изохор образуют теоретический цикл бензинового мотора. Если заменить в нем изохору, по которой идет нагревание газа, изобарой - получится цикл дизеля. Две адиабаты и две изобары дадут теоретический цикл газовой турбины. Среди всех мыслимых циклов комбинация из двух адиабат и двух изотерм играет особо важную роль в термодинамике, так как по такому циклу - циклу Карно - должен работать двигатель с самым высоким к.п.д.

    Если в двигателе Стирлинга подвод тепла производился по изохорам, то у Эриксона этот процесс происходил по изобаре, а процессы сжатия и расширения протекали по изотермам.

    В начале нашего века движки Эриксона небольшой мощности (порядка 10-20 л. с.) нашли применение в различных странах. Тысячи таких установок трудились на фабриках, в типографиях, шахтах и рудниках, крутили валы станков, качали воду, поднимали лифты. Под названием «тепло и сила» они были известны и в России.

    Предпринимались попытки сделать большой судовой двигатель, но результаты испытаний обескураживали не только скептиков, но и самого Эриксона. Вопреки пророчествам первых судно «сдвинулось с места» и даже пересекло Атлантический океан. Но и ожидания изобретателя были обмануты: четыре гигантских по размерам двигателя вместо 1000 л. с. развили всего 300 л. с. Расход угля получился такой же, как и у паровых машин. К тому же днища рабочих цилиндров к концу рейса прогорели насквозь, и в Англии двигатели пришлось снять и тайком заменить обычной паровой машиной. В довершение всех несчастий на обратном пути в Америку судно потерпело аварию и погибло со всем экипажем.

    1 - рабочий поршень 2 - поршень-вытеснитель; 3 - охладитель; 4 - нагреватель; 5 - регенератор; 6 - холодное пространство; 7 - горячее пространство.

    Отказавшись от мысли строить «калорические машины» большой мощности, Эриксон наладил массовый выпуск небольших двигателей. Дело в том, что уровень науки и техники того времени не позволял спроектировать и построить экономичную и мощную машину.

    Но главный удар Эриксону нанесли изобретатели двигателя внутреннего сгорания. Бурное развитие дизелей и карбюраторных двигателей заставило предать забвению хорошую идею.

    …Прошло столетие. В 30-х годах одно из военных ведомств поручает фирме «Филипс» разработать энергоустановку мощностью 200-400 вт для походной радиостанции. Причем двигатель должен быть всеядным, то есть работать на любом виде топлива.

    Специалисты фирмы со всей основательностью принялись за дело. Начали с исследований различных термодинамических циклов и, к своему удивлению, обнаружили, что теоретически самый экономичный - давно забытый двигатель Стирлинга.

    Война приостановила исследования, но в конце 40-х годов работы были продолжены. И тогда в результате многочисленных экспериментов и расчетов было сделано новое открытие - замкнутый контур, в котором под давлением около 200 атм. циркулировало рабочее тело (водород или гелий, как обладающие наименьшей вязкостью и наибольшей теплоемкостью). Правда, замкнув цикл, инженеры вынуждены были позаботиться об искусственном охлаждении рабочего тела. Так появился охладитель, которого не было у первых двигателей внешнего сгорания. И хотя нагреватель и охладитель, как бы компактны они ни были, утяжеляют стирлинг, зато сообщают ему одно очень важное качество.

    Изолированные от внешней среды, они практически не зависят от нее. Стирлинг может работать от любого источника тепла всюду: под водой, под землей, в космосе - то есть там, где двигатели внутреннего сгорания, нуждающиеся в воздухе, работать не могут. В таких условиях без нагревателей и охладителей, передающих тепло через стенку, в принципе нельзя обойтись. И тут-то стирлинг побивают своих соперников даже по весу. У первых опытных образцов удельный вес на единицу мощности был порядка 6-7 кг на л. с., как у судовых дизелей. Современные стирлинги имеют еще меньшее соотношение - 1,5-2 кг на л. с. Они еще более компактны и легки.

    Итак, схема стала двухконтурной: один контур с рабочим агентом и второй - подвод тепла; это позволило довести энергосъем до 200 л. с. на литр рабочего объема, а к.п.д. - до 38-40 процентов. Для сравнения:современ-

    ные дизели имеют к.п.д. 34-38 процентов, а карбюраторные двигатели - 25-28. Кроме того, процесс сгорания топлива у стирлинга непрерывный, а это резко снижает токсичность - по выходу окиси углерода в 200 раз, по окиси азота - на 1-2 порядка. Вот где, возможно, одно из радикальных решений проблемы загрязнения атмосферы городов.

    Рабочая часть современного Стирлинга представляет собой замкнутый объем, заполненный рабочим газом (рис. 2). Верхняя часть объема - горячая, она непрерывно нагревается. Нижняя - холодная, все время охлаждается водой. В том же объеме - цилиндр с двумя поршнями: вытеснителем и рабочим. Когда поршень идет вверх, газ в объеме сжимается; вниз - расширяется. Движением же вверх-вниз поршня-вытеснителя производится попеременное распределение нагретого и охлажденного газа. Когда поршень-вытеснитель находится в верхнем положении (в горячем пространстве), большая часть газа оказывается вытесненной в холодную зону. В это время рабочий поршень начинает двигаться вверх и сжимает холодный газ. Теперь поршень-вытеснитель устремляется вниз до соприкосновения с рабочим поршнем, и сжатый холодный газ перекачивается в горячее пространство. Расширение нагреваемого газа - рабочий ход. Часть энергии рабочего хода запасается на последующее сжатие холодного газа, а избыток идет на вал двигателя.

    Регенератор находится между холодным и горячим пространствами. Когда расширившийся горячий газ движением поршня-вытеснителя перекачивается в холодную часть, он проходит через плотный пучок тонких медных проволочек и отдает им содержащееся в нем тепло. Во время обратного хода сжатый холодный воздух, прежде чем попасть в горячую часть, отбирает это тепло обратно.

    1 - топливная форсунка; 2 - выхлоп охлажденных газов, 3 - воздухонагреватель; 4 - выход горячих газов; 5 - горячее пространство; 6 - регенератор; 7 - цилиндр; 8 - трубки охладителя; 9 - холодное пространство; 10 - рабочий поршень; 11 - ромбический привод; 12 - камера сгорания; 13 - трубки нагревателя; 14 - поршень-вытеснитель; 15 - впуск воздуха для сжигания топлива; 16 - буферная полость.

    Конечно, в реальной машине все выглядит не так просто (рис. 3). Невозможно быстро нагреть газ через толстую стенку цилиндра, для этого нужна гораздо большая поверхность нагрева. Вот почему верхняя часть замкнутого объема превращается в систему тонких трубок, нагреваемых пламенем форсунки. Чтобы как можно полнее использовать теплоту продуктов сгорания, холодный воздух, подводящийся к форсунке, предварительно подогревается выхлопными газами - так появляется довольно сложный контур сгорания.

    Холодная часть рабочего объема - тоже система трубок, в которые нагнетается охлаждающая вода.

    Под рабочим поршнем - замкнутая буферная полость, наполненная сжатым газом. Во время рабочего хода давление в этой полости повышается. Запасаемой при этом энергии достаточно для того, чтобы сжать холодный газ в рабочем объеме.

    По мере совершенствования неудержимо росли температура и давление. 800° по Цельсию и 250 атм. - это весьма трудная задача для конструкторов, это поиски особо прочных и термостойких материалов, сложная проблема охлаждения, так как выделение тепла по сравнению с классическими двигателями здесь в полтора-два раза больше.

    Результаты этих экспериментов порой приводят к самым неожиданным находкам. К примеру, специалисты фирмы «Филипс», обкатывая свой движок на холостом ходу (без нагрева), заметили, что головка цилиндра сильно охлаждается. Совершенно случайно обнаруженный эффект повлек за собой целую серию разработок, и в итоге рождение новой холодильной машины. Сейчас такие высокопроизводительные и малогабаритные холодильные агрегаты широко используются во всем мире. Но вернемся к тепловым машинам.

    Последующие события нарастают как снежный ком. В 1958 году с приобретением лицензий другими фирмами стирлинг шагнул за океан. Его стали испытывать в самых различных областях техники. Разрабатывается проект применения двигателя для питания аппаратуры космических кораблей и спутников. Для полевых радиостанций создаются энергоустановки, работающие на любом виде топлива (мощностью порядка 10 л. с.), обладающие настолько малым уровнем шума, что его не слышно за 20 шагов.

    Громадную сенсацию вызвала демонстрационная установка, работающая на двадцати видах топлива. Без отключения двигателя, простым поворотом крана, в камеру сгорания поочередно подавали бензин, солярку, сырую нефть, оливковое масло, горючий газ - и машина прекрасно «съедала» любой «корм». В зарубежной печати были сообщения о проекте двигателя на 2,5 тысячи л. с. с атомным реактором. Предполагаемый к.п.д. 48-50%. Значительно уменьшаются все габариты энергоблока, что позволяет высвободившиеся вес и площадь отдать под биологическую защиту реактора.

    Еще одна интересная разработка - привод для искусственного сердца весом 600 г и мощностью 13 вт. Слаборадиоактивный изотоп обеспечивает ее практически неисчерпаемым источником энергии.

    Двигатель Стирлинга испытывался на некоторых автомобилях. По своим рабочим параметрам он не уступил карбюраторному, а уровень шумов и токсичность выхлопных газов значительно снизились.

    Автомобиль со стирлингом может работать на любом виде.топлива, а при необходимости - на расплаве. Представьте: перед тем как въехать в город, водитель включает горелку и расплавляет несколько килограммов окиси алюминия или гидрида лития. По городским улицам он едет «не дымя»: двигатель работает от тепла, запасенного расплавом. Одна из фирм изготовила мотороллер, в бак которого заливается около 10 литров расплава фтористого лития. Такой зарядки хватает на 5 часов работы при мощности движка 3 л. с.

    Работы над Стирлингами продолжаются. В 1967 году изготовлен образец опытной установки мощностью 400 л. с. на один цилиндр. Проводится комплексная программа, согласно которой к 1977 году планируется серийное производство двигателей с диапазоном мощности от 20 до 380 л. с. В 1971 году «Филипс» выпустила четырехцилиндровый промышленный двигатель в 200 л. с. с полным весом 800 кг. Уравновешенность его настолько высока, что поставленная ребром на кожух монета (размером в пятак) стоит не шелохнувшись.

    К достоинствам нового типа двигателя можно отнести и большой моторесурс порядка 10 тыс. час. (есть отдельные данные о 27 тыс.), и плавность работы, так как давление в цилиндрах нарастает плавно (по синусоиде), а не взрывами, как у дизеля.

    Перспективные разработки новых моделей проводятся и у нас. Ученые и инженеры трудятся над кинематикой различных вариантов, на электронно-вычислительных машинах просчитывают различные виды «сердца», стирлинга-регенератора. Идет поиск новых инженерных решений, которые лягут в основу экономичных и мощных двигателей, способных потеснить привычные дизели и бензиновые моторы, исправив тем самым несправедливую ошибку истории.

    А. АЛЕКСЕЕВ

    Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

    1. Введение……………………………………………………………………………… 3

    2. История ……………………………………………………………………………… 4

    3. Описание …………………………………………………………………………… 4

    4. Конфигурация ……………………………………………………………………. 6

    5. Недостатки ………………………………………………………………………….. 7

    6. Преимущества …………………………………………………………………… 7

    7. Применение ………………………………………………………………………. 8

    8. Заключение ………………………………………………………………………. 11

    9. Список литературы ………………………………………………………….. 12

    Введение

    В начале XXI века человечество смотрит в будущее с оптимизмом. На это есть самые веские доводы. Ученая мысль не стоит на месте. Сегодня нам предлагаются все новые и новые разработки. Идет внедрение в нашу жизнь все более экономичных, экологически безопасных и перспективных технологий

    Это касается, прежде всего, альтернативного двигателестроения и использования так называемых "новых" альтернативных видов топлива: ветра, солнца, воды и других источников энергии

    Благодаря двигателям всевозможных типов человек получает энергию, свет, тепло и информацию. Двигатели являются сердцем, которое бьется в такт с развитием современной цивилизации. Они обеспечивают рост производства, сокращают расстояния. Распространенные в настоящее время двигатели внутреннего сгорания имеют целый ряд недостатков: их работа сопровождается шумом, вибрациями, они выделяют вредные отработавшие газы, загрязняю тем самым нашу природу, и потребляют много топлива. Но на сегодняшний день альтернатива им уже существует. Класс двигателей, вред от которых минимален, - двигатели Стирлинга. Они работают по замкнутому циклу, без непрерывных микро взрывов в рабочих цилиндрах, практически без выделения вредных газов, да и топлива им требуется гораздо меньше

    Изобретенные задолго до двигателя внутреннего сгорания и дизеля, двигатель Стирлинга был незаслуженно забыт

    Возрождение интереса к двигателям Стирлинга обычно ассоциируется с деятельностью фирмы Philips. Работы по конструированию двигателей Стирлинга небольшой мощности начались в фирме в середине 30-х годов ХХ века. Целью работ было создание небольшого электрического генератора с низким уровнем шума и тепловым приводом для питания радиоаппаратуры в районах мира с отсутствием регулярных источников электроснабжения. В 1958 году компания General Motors заключила лицензионное соглашение с фирмой Philips, и их сотрудничество продолжалось до 1970 года. Разработки были связаны с использованием двигателей Стирлинга для космических и подводных энергетических установок, автомобилей и судов, а также для систем стационарного энергоснабжения. Шведская фирма United Stirling, сконцентрировавшая свои усилия в основном на двигателях для транспортных средств большой грузоподъемности, распространили свои интересы на область двигателей для легковых машин. Настоящий же интерес к двигателю Стирлинга возродился только во времена так называемого “энергетического кризиса”. Именно тогда особенно привлекательными показались потенциальные возможности этого двигателя в отношении экономического потребления обычного жидкого топлива, что представлялось весьма важным в связи с ростом цен на топливо

    История

    Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 года (английский патент № 4081). Однако первые элементарные «двигатели горячего воздуха» были известны ещё в конце XVII века, задолго до Стирлинга. Достижением Стирлинга является добавление очистителя, который он назвал «эконом». В современной научной литературе этот очиститель называется « регенератор » (теплообменник). Он увеличивает производительность двигателя, удерживая тепло в тёплой части двигателя, в то время как рабочее тело охлаждается. Этот процесс намного повышает эффективность системы. В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году фирма « Филипс » инвестировала в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %. Двигатель Стирлинга имеет много преимуществ и был широко распространён в эпоху паровых машин.

    Описание

    Дви́гатель Сти́рлинга - тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

    В XIX веке инженеры хотели создать безопасную альтернативу паровым двигателям того времени, котлы которых часто взрывались из-за высоких давлений пара и неподходящих материалов для их постройки. Хорошая альтернатива паровым машинам появилась с созданием двигателей Стирлинга, который мог преобразовывать в работу любую разницу температур. Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. В ряде экспериментальных образцов испытывались фреоны, двуокись азота, сжиженный пропан-бутан и вода. В последнем случае вода остаётся в жидком состоянии на всех участках термодинамического цикла. Особенностью стирлинга с жидким рабочим телом является малые размеры, высокая удельная мощность и большие рабочие давления. Существует также стирлинг с двухфазным рабочим телом. Он тоже характеризуется высокой удельной мощностью, высоким рабочим давлением.

    Из термодинамики известно, что давление, температура и объём газа взаимосвязаны и следуют закону идеальных газов

    , где:
    • P - давление газа;
    • V - объём газа;
    • n - количество молей газа;
    • R - универсальная газовая константа;
    • Т - температура газа в кельвинах.

    Это означает, что при нагревании газа его объём увеличивается, а при охлаждении - уменьшается. Это свойство газов и лежит в основе работы двигателя Стирлинга.

    Двигатель Стирлинга использует цикл Стирлинга, который по термодинамической эффективности не уступает циклу Карно, и даже обладает преимуществом. Дело в том, что цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация этого цикла малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах.

    Цикл Стирлинга состоит из четырёх фаз и разделён двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. Таким образом, при переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, находящегося в цилиндре. Разницу объёмов газа можно превратить в работу, чем и занимается двигатель Стирлинга. Рабочий цикл двигателя Стирлинга beta-типа:

    1 2 3 4

    где: a - вытеснительный поршень; b - рабочий поршень; с - маховик; d - огонь (область нагревания); e - охлаждающие ребра (область охлаждения).

    1. Внешний источник тепла нагревает газ в нижней части теплообменного цилиндра. Создаваемое давление толкает рабочий поршень вверх (обратите внимание, что вытеснительный поршень неплотно прилегает к стенкам).
    2. Маховик толкает вытеснительный поршень вниз, тем самым перемещая разогретый воздух из нижней части в охлаждающую камеру.
    3. Воздух остывает и сжимается, поршень опускается вниз.
    4. Вытеснительный поршень поднимается вверх, тем самым перемещая охлаждённый воздух в нижнюю часть. И цикл повторяется.

    В машине Стирлинга движение рабочего поршня сдвинуто на 90° относительно движения поршня-вытеснителя. В зависимости от знака этого сдвига машина может быть двигателем или тепловым насосом. При сдвиге 0 машина не производит никакой работы (кроме потерь на трение) и не вырабатывает её.

    Бета-Стирлинг - цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, частью теплообменника, или совмещённым с поршнем-вытеснителем.

    Гамма-Стирлинг - тоже есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром.

    Двигатель Стирлинга, принцип работы которого качественно отличается от привычного для всех ДВС, когда-то составлял последнему достойную конкуренцию. Однако на какое-то время о нем забыли. Как этот мотор используется сегодня, в чем заключается принцип его действия (в статье можно найти также чертежи двигателя Стирлинга, наглядно демонстрирующие его работу), и каковы перспективы применения в будущем, читайте ниже.

    История

    В 1816 году в Шотландии Робертом Стирлингом была запатентована названная сегодня в честь своего изобретателя. Первые двигатели горячего воздуха были изобретены еще до него. Но Стирлинг добавил в устройство очиститель, который в технической литературе называется регенератором, или теплообменником. Благодаря ему производительность мотора возрастала при удерживании агрегата в тепле.

    Двигатель признали наиболее прочной паровой машиной из имеющихся на тот момент, так как он никогда не взрывался. До него на других моторах такая проблема возникала часто. Несмотря на быстрый успех, в начале двадцатого столетия от его развития отказались, так как он стал менее экономичным, по сравнению с появившимися тогда другими двигателями внутреннего сгорания и электродвигателями. Однако Стирлинг еще продолжал применяться в некоторых производствах.

    Двигатель внешнего сгорания

    Принцип работы всех тепловых моторов заключается в том, что для получения газа в расширенном состоянии необходимы большие механические усилия, чем при сжатии холодного. Для наглядной демонстрации этого можно провести опыт с двумя кастрюлями, наполненными холодной и горячей водой, а также бутылкой. Последнюю опускают в холодную воду, затыкают пробкой, затем переносят в горячую. При этом газ в бутылке начнет выполнять механическую работу и вытолкнет пробку. Первый двигатель внешнего сгорания основывался на этом процессе полностью. Правда, позже изобретатель понял, что часть тепла можно применять для подогрева. Таким образом, производительность значительно возросла. Но даже это не помогло двигателю стать распространенным.

    Позже Эриксон, инженер из Швеции, усовершенствовал конструкцию, предложив охлаждать и нагревать газ при постоянном давлении вместо объема. В результате немало экземпляров стало использоваться для работы в шахтах, на судах и в типографиях. Но для экипажей они оказались слишком тяжелыми.

    Двигатели внешнего сгорания от Philips

    Подобные моторы бывают следующих типов:

    • паровой;
    • паротурбинный;
    • Стирлинга.

    Последний вид не стали развивать из-за небольшой надежности и остальных не самых высоких показателей по сравнению с появившимися другими типами агрегатов. Однако в 1938 году компания Philips возобновила работу. Двигатели стали служить для приводов генераторов в неэлектрофицированных районах. В 1945 году инженеры компании нашли им обратное применение: если вал раскручивать электромотором, то охлаждение головки цилиндров доходит до минус ста девяносто градусов по Цельсию. Тогда решено было применять в холодильных установках усовершенствованный двигатель Стирлинга.

    Принцип работы

    Действие мотора заключается в работе по термодинамическим циклам, в которых при разной температуре происходит сжатие и расширение. При этом регулирование потоком рабочего тела реализуется за счет изменяющегося объема (или давления - в зависимости от модели). Таков принцип работы большинства подобных машин, которые могут иметь разные функции и конструктивные схемы. Двигатели могут быть поршневыми или роторными. Машины с их установками работают в качестве тепловых насосов, холодильников, генераторов давления и так далее.

    Помимо этого, есть моторы с открытым циклом, где регулирование потоком реализуется посредством клапанов. Именно их называют двигателями Эриксона, кроме общего названия имени Стирлинга. В ДВС полезная работа осуществляется после предварительного сжатия воздуха, впрыска топлива, нагрева полученной смеси вперемешку со сгоранием и расширения.

    Двигатель Стирлинга принцип работы имеет такой же: при низкой температуре происходит сжатие, а при высокой - расширение. Но по-разному осуществляется нагрев: тепло подводится через стенку цилиндра извне. Поэтому он и получил название двигателя внешнего сгорания. Стирлинг применял периодическое изменение температуры с вытеснительным поршнем. Последний перемещает газ с одной полости цилиндра в другую. С одной стороны, температура постоянно низкая, а с другой - высокая. При передвижении поршня вверх газ перемещается из горячей в холодную полость, а вниз - возвращается в горячую. Сначала газ отдает много тепла холодильнику, а затем от нагревателя получает столько же, сколько отдал. Между нагревателем и холодильником размещается регенератор - полость, наполненная материалом, которому газ отдает тепло. При обратном течении регенератор возвращает его.

    Система вытеснителя соединена с рабочим поршнем, сжимающим газ в холоде и позволяющим расширяться в тепле. За счет сжатия в более низкой температуре происходит полезная работа. Вся система проходит четыре цикла при прерывистых движениях. Кривошипно-шатунный механизм при этом обеспечивает непрерывность. Поэтому резких границ между стадиями цикла не наблюдается, а Стирлинга не уменьшается.

    Учитывая все вышесказанное, напрашивается вывод, что этот двигатель является поршневой машиной с внешним подводом тепла, где рабочее тело не покидает замкнутое пространство и не заменяется. Чертежи двигателя Стирлинга хорошо иллюстрируют устройство и принцип его действия.

    Детали работы

    Солнце, электричество, ядерная энергия или любой другой источник тепла может подводить энергию в двигатель Стирлинга. Принцип работы его тела заключается в применении гелия, водорода или воздуха. Идеальный цикл обладает термическим максимально возможным КПД, равным от тридцати до сорока процентов. Но с эффективным регенератором он сможет работать и с более высоким КПД. Регенерацию, нагрев и охлаждение обеспечивают встроенные теплообменники, работающие без масел. Следует отметить, что смазки двигателю нужно очень мало. Среднее давление в цилиндре составляет обычно от 10 до 20 МПа. Поэтому здесь требуется отличная уплотнительная система и возможность попадания масла в рабочие полости.

    Сравнительная характеристика

    В большинстве работающих сегодня двигателей подобного рода используется жидкое топливо. При этом непрерывное давление легко контролировать, что способствует снижению уровня выбросов. Отсутствие клапанов обеспечивает бесшумную работу. Мощность с массой сопоставимы моторам с турбонаддувом, а удельная мощность, получаемая на выходе, равна показателю дизельного агрегата. Скорость и крутящий момент не зависят друг от друга.

    Затраты на производство двигателя гораздо выше, чем на ДВС. Но при эксплуатации получается обратный показатель.

    Преимущества

    Любая модель двигателя Стирлинга имеет много плюсов:

    • КПД при современном проектировании может доходить до семидесяти процентов.
    • В двигателе нет системы высоковольтного зажигания, распределительного вала и клапанов. Его не нужно будет регулировать в течение всего срока эксплуатации.
    • В Стирлингах нет того взрыва, как в ДВС, который сильно нагружает коленвал, подшипники и шатуны.
    • В них не бывает того эффекта, когда говорят, что «двигатель заглох».
    • Благодаря простоте прибора его можно эксплуатировать в течение длительного времени.
    • Он может работать как на дровах, так и с ядерным и любым другим видом топлива.
    • Сгорание происходит вне мотора.

    Недостатки

    Применение

    В настоящее время двигатель Стирлинга с генератором используют во многих областях. Это универсальный источник электрической энергии в холодильниках, насосах, на подводных лодках и солнечных электрических станциях. Именно благодаря применению различного вида топлива имеется возможность его широкого использования.

    Возрождение

    Эти двигатели снова стали развиваться благодаря компании Philips. В середине двадцатого века с ней заключила договор General Motors. Она вела разработки для применения Стирлингов в космических и подводных устройствах, на судах и автомобилях. Вслед за ними другая компания из Швеции, United Stirling, стала заниматься их развитием, включая и возможное использование на

    Сегодня линейный двигатель Стирлинга применяется на установках подводных, космических и солнечных аппаратов. Большой интерес к нему вызван из-за актуальности вопросов ухудшения экологической обстановки, а также борьбы с шумом. В Канаде и США, Германии и Франции, а также Японии идут активные поиски по развитию и совершенствованию его использования.

    Будущее

    Явные преимущества, которые имеет поршневой и Стирлинга, заключающиеся в большом ресурсе работы, применении разного топлива, бесшумности и малой токсичности, делают его очень перспективным на фоне мотора внутреннего сгорания. Однако с учетом того, что ДВС на протяжении всего времени совершенствовали, он не может быть легко смещен. Так или иначе, именно такой двигатель сегодня занимает лидирующие позиции, и сдавать их в ближайшее время не намерен.