Войти
Автомобильный портал - Двигатель. Замена свечей. Подсветка. Права и вождение
  • Калорийность и состав горбуши Горбуша запеченная в духовке калорийность на 100
  • Щавелевый суп с курицей калорийность
  • Как правильно и вкусно готовить шампиньоны
  • Лучшие рецепты майонеза в домашних условиях: фото, видео, советы, как сделать блендером или миксером
  • Диетическая запеканка из кабачков с сыром Низкокалорийная запеканка из кабачков
  • Желатин растворять для желе сколько воды
  • Детонационный двигатель. Успехи и перспективы

    Детонационный двигатель.  Успехи и перспективы

    Пока всё прогрессивное человечество из стран НАТО готовится приступить к испытаниям детонационного двигателя (испытания могут случиться в 2019 году (а скорее значительно позже)), в отсталой России объявили о завершении испытаний такого двигателя.

    Объявили совершенно спокойно и никого не пугая. Но на Западе ожидаемо испугались и начался истерический вой – мы отстанем на всю оставшуюся жизнь. Работы над детонационным двигателем (ДД) ведутся в США, Германии, Франции и Китае. В общем, есть основания полагать, что решение проблемы интересует Ирак и Северную Корею – уж очень перспективная наработка, которая фактически означает новый этап в ракетостроении. И вообще в двигателестроении.

    Идея детонационного двигателя впервые была озвучена в 1940 году советским физиком Я.Б. Зельдовичем. И создание такого двигателя сулило огромные выгоды. Для ракетного двигателя, например,:

    • В 10 000 раз повышается мощность по сравнению с обычным ЖРД. В данном случае мы говорим о мощности, получаемой с единицы объёма двигателя;
    • В 10 раз меньше топлива на единицу мощности;
    • ДД просто существенно (в разы) дешевле стандартного ЖРД.

    Жидкостный ракетный двигатель – это такая большая и очень дорогая горелка. А дорогая потому, что для поддержания устойчивого горения требуется большое количество механических, гидравлических, электронных и других механизмов. Очень сложное производство. Настолько сложное, что США уже много лет не могут создать свой ЖРД и вынуждены закупать в России РД-180.

    Россия очень скоро получит серийный надёжный недорогой лёгкий ракетный двигатель. Со всеми вытекающими последствиями:

    ракета может нести в разы большее количество полезной нагрузки – сам двигатель весит существенно меньше, топлива нужно в 10 раз меньше на заявленную дальность полёта. А можно эту дальность просто в 10 раз увеличить;

    себестоимость ракеты снижается кратно. Это хороший ответ для любителей организовать гонку вооружения с Россией.

    А ещё есть дальний космос… Открываются просто фантастические перспективы по его освоению.

    Впрочем, американцы правы и сейчас не до космоса – уже готовятся пакеты санкций, чтобы детонационный двигатель в России не случился. Мешать будут изо всех сил – уж больно серьёзную заявку на лидерство сделали наши учёные.

    07 Фев 2018 Метки: 2479

    Обсуждение: 3 комментария

      * В 10 000 раз повышается мощность по сравнению с обычным ЖРД. В данном случае мы говорим о мощности, получаемой с единицы объёма двигателя;
      В 10 раз меньше топлива на единицу мощности;
      —————
      как-то не вяжется с другими публикациями:
      «В зависимости от конструкции он может превосходить оригинальный ЖРД по КПД от 23-27% для типовой конструкции с расширяющимся соплом, вплоть до 36-37% прироста в КВРД (клиновоздушные ракетные двигатели)
      Они способны изменять давление истекающей газовой струи в зависимости от атмосферного давления, и экономить до 8-12% топлива на всём участке выведения конструкции (Основная экономия происходит на малых высотах, где она доходит до 25-30%).»

    Новая физическая идея — использование детонационного горения вместо обычного, дефлаграционного — позволяет радикально улучшить характеристики реактивного двигателя.


    Говоря о космических программах, мы в первую очередь думаем о мощных ракетах, которые выводят на орбиту космические корабли. Сердце ракеты-носителя — ее двигатели, создающие реактивную тягу. Ракетный двигатель — это сложнейшее энергопреобразующее устройство, во многом напоминающее живой организм со своим характером и манерами поведения, которое создается поколениями ученых и инженеров. Поэтому изменить что-то в работающей машине практически невозможно: ракетчики говорят: "Не мешай машине работать..." Такой консерватизм, хотя он многократно оправдан практикой космических пусков, все же тормозит ракетно-космическое двигателестроение — одну из самых наукоемких областей деятельности человека. Необходимость изменений назрела уже давно: для решения целого ряда задач нужны существенно более энергоэффективные двигатели, чем те, которые эксплуатируются сегодня и которые по своему совершенству достигли предела.

    Нужны новые идеи, новые физические принципы. Ниже речь пойдет именно о такой идее и о ее воплощении в демонстрационном образце ракетного двигателя нового типа.

    Дефлаграция и детонация


    В большинстве существующих ракетных двигателей химическая энергия горючего преобразуется в тепло и механическую работу за счет медленного (дозвукового) горения — дефлаграции — при практически постоянном давлении: P=const . Однако, кроме дефлаграции, известен и другой режим горения — детонация. При детонации химическая реакция окисления горючего протекает в режиме самовоспламенения при высоких значениях температуры и давления за сильной ударной волной, бегущей с высокой сверхзвуковой скоростью. Если при дефлаграции углеводородного горючего мощность тепловыделения с единицы площади поверхности фронта реакции составляет ~1 МВт/м2, то мощность тепловыделения в детонационном фронте на три-четыре порядка выше и может достигать 10000 МВт/м2 (выше мощности излучения с поверхности Солнца!). Кроме того, в отличие от продуктов медленного горения, продукты детонации обладают огромной кинетической энергией: скорость продуктов детонации в ~20-25 раз выше скорости продуктов медленного горения. Возникают вопросы: нельзя ли в ракетном двигателе вместо дефлаграции использовать детонацию и приведет ли замена режима горения к повышению энергоэффективности двигателя?

    Приведем простой пример, который иллюстрирует преимущества детонационного горения в ракетном двигателе над дефлаграционным. Рассмотрим три одинаковых камеры сгорания (КС) в виде трубы с одним закрытым и другим открытым концом, которые заполнены одинаковой горючей смесью при одинаковых условиях и поставлены закрытым концом вертикально на тягоизмерительные весы (рис. 1). Энергию зажигания будем считать пренебрежимо малой по сравнению с химической энергией горючего в трубе.

    Рис. 1. Энергоэффективность детонационного двигателя

    Пусть в первой трубе горючая смесь зажигается одним источником, например, автомобильной свечой, расположенной у закрытого конца. После зажигания вверх по трубе побежит медленное пламя, видимая скорость которого обычно не превышает 10 м/c, то есть много меньше скорости звука (около 340 м/с). Это означает, что давление в трубе P будет очень мало отличаться от атмосферного Pa , и показания весов практически не изменятся. Другими словами, такое (дефлаграционное) сжигание смеси фактически не приводит к появлению избыточного давления на закрытом конце трубы, и, следовательно, дополнительной силы, действующей на весы. В таких случаях говорят, что полезная работа цикла с P =Pa =const равна нулю и, следовательно, равен нулю термодинамический коэффициент полезного действия (КПД). Именно поэтому в существующих силовых установках горение организуется не при атмосферном, а при повышенном давлении P "Pa , получаемом с помощью турбонасосов. В современных ракетных двигателях среднее давление в КС достигает 200-300 атм.

    Попытаемся изменить ситуацию, установив во второй трубе множество источников зажигания, которые одновременно зажигают горючую смесь по всему объему. В этом случае давление в трубе P быстро возрастет, как правило, в семь-десять раз, и показания весов изменятся: на закрытый конец трубы в течение некоторого времени — времени истечения продуктов горения в атмосферу — будет действовать достаточно большая сила, которая способна совершить большую работу. Что же изменилось? Изменилась организация процесса горения в КС: вместо горения при постоянном давлении P =const мы организовали горение при постоянном объеме V =const .

    Теперь вспомним о возможности организации детонационного горения нашей смеси и в третьей трубе вместо множества распределенных слабых источников зажигания установим, как и в первой трубе, один источник зажигания у закрытого конца трубы, но не слабый, а сильный — такой, который приведет к возникновению не пламени, а детонационной волны. Возникнув, детонационная волна побежит вверх по трубе с высокой сверхзвуковой скоростью (около 2000 м/с), так что вся смесь в трубе сгорит очень быстро, и давление в среднем повысится как при постоянном объеме — в семь-десять раз. При более детальном рассмотрении оказывается, что работа, совершенная в цикле с детонационным горением, будет даже выше, чем в цикле V = const .

    Таким образом, при прочих равных условиях детонационное сгорание горючей смеси в КС позволяет получить максимальную полезную работу по сравнению с дефлаграционным горением при P =const и V =const , то есть позволяет получить максимальный термодинамический КПД. Если вместо существующих ракетных двигателей с дефлаграционным горением использовать двигатели с детонационным горением, то такие двигатели могли бы дать чрезвычайно большие выгоды. Этот результат был впервые получен нашим великим соотечественником академиком Яковом Борисовичем Зельдовичем еще в 1940 году, однако до сих пор не нашел практического применения. Основная причина этому — сложность организации управляемого детонационного горения штатных ракетных топлив.

    Мощность тепловыделения в детонационном фронте на 3-4 порядка выше, чем во фронте обычного дефлаграционного горения и может превышать мощность излучения с поверхности Солнца. Скорость продуктов детонации в 20-25 раз выше скорости продуктов медленного горения

    Импульсный и непрерывный режимы


    До настоящего времени предложено множество схем организации управляемого детонационного горения, включая схемы с импульсно-детонационным и с непрерывно-детонационным рабочим процессом. Импульсно-детонационный рабочий процесс основан на циклическом заполнении КС горючей смесью с последующим зажиганием, распространением детонации и истечением продуктов в окружающее пространство (как в третьей трубе в рассмотренном выше примере). Непрерывно-детонационный рабочий процесс основан на непрерывной подаче горючей смеси в КС и ее непрерывном сгорании в одной или нескольких детонационных волнах, непрерывно циркулирующих в тангенциальном направлении поперек потока.

    Концепция КС с непрерывной детонацией предложена в 1959 году академиком Богданом Вячеславовичем Войцеховским и долгое время изучалась в Институте гидродинамики СО РАН. Простейшая непрерывно-детонационная КС представляет собой кольцевой канал, образованный стенками двух коаксиальных цилиндров (рис. 2). Если на днище кольцевого канала поместить смесительную головку, а другой конец канала оборудовать реактивным соплом, то получится проточный кольцевой реактивный двигатель. Детонационное горение в такой КС можно организовать, сжигая горючую смесь, подаваемую через смесительную головку, в детонационной волне, непрерывно циркулирующей над днищем. При этом в детонационной волне будет сгорать горючая смесь, вновь поступившая в КС за время одного оборота волны по окружности кольцевого канала. К другим достоинствам таких КС относят простоту конструкции, однократное зажигание, квазистационарное истечение продуктов детонации, высокую частоту циклов (килогерцы), малый продольный размер, низкий уровень эмиссии вредных веществ, низкий уровень шума и вибраций.

    Заданный удельный импульс в детонационном ракетном двигателе достигается при значительно меньшем давлении, чем в традиционном жидкостном ракетном двигателе. Это позволит в перспективе кардинально изменить массогабаритные характеристики ракетных двигателей


    Рис. 2. Схема детонационного ракетного двигателя

    Демонстрационный образец


    В рамках проекта Минобрнауки создан демонстрационный образец непрерывно-детонационного ракетного двигателя (ДРД) с КС диаметром 100 мм и шириной кольцевого канала 5 мм, который испытан при работе на топливных парах водород--кислород, сжиженный природный газ--кислород и пропан-бутан--кислород. Огневые испытания ДРД проводились на специально разработанном испытательном стенде. Длительность каждого огневого испытания — не более 2 с. За это время с помощью специальной диагностической аппаратуры регистрировались десятки тысяч оборотов детонационных волн в кольцевом канале КС. При работе ДРД на топливной паре водород--кислород впервые в мире экспериментально доказано, что термодинамический цикл с детонационным горением (цикл Зельдовича) на 7-8% эффективнее, чем термодинамический цикл с обычным горением при прочих равных условиях.

    В рамках проекта создана уникальная, не имеющая мировых аналогов вычислительная технология, предназначенная для полномасштабного моделирования рабочего процесса в ДРД. Эта технология фактически позволяет проектировать двигатели нового типа. При сравнении результатов расчетов с измерениями оказалось, что расчет точно прогнозирует количество детонационных волн, циркулирующих в тангенциальном направлении в кольцевой КС ДРД заданной конструкции (четыре, три или одну волну, рис. 3). Расчет с приемлемой точностью предсказывает и рабочую частоту процесса, то есть дает значения скорости детонации, близкие к измеренным, и тягу, фактически развиваемую ДРД. Кроме того, расчет правильно предсказывает тенденции изменения параметров рабочего процесса при повышении расхода горючей смеси в ДРД заданной конструкции — как и в эксперименте, количество детонационных волн, частота вращения детонации и тяга при этом увеличиваются.


    Рис. 3. Квазистационарные расчетные поля давления (а, б) и температуры (в) в условиях трех экспериментов (слева направо). Как и в экспериментах, в расчетах получены режимы с четырьмя, тремя и одной детонационными волнами

    ДРД против ЖРД


    Основной показатель энергоэффективности ракетного двигателя — удельный импульс тяги, равный отношению тяги, развиваемой двигателем, к весовому секундному расходу горючей смеси. Удельный импульс измеряется в секундах (с). Зависимость удельного импульса тяги ДРД от среднего давления в КС, полученная в ходе огневых испытаний двигателя нового типа, такова, что удельный импульс увеличивается с ростом среднего давления в КС. Основной целевой показатель проекта — удельный импульс тяги 270 с в условиях на уровне моря — достигнут в огневых испытаниях при среднем давлении в КС, равном 32 атм. Измеренная тяга ДРД при этом превысила 3 кН.

    При сравнении удельных характеристик ДРД с удельными характеристиками в традиционных жидкостных ракетных двигателях (ЖРД) оказывается, что заданный удельный импульс в ДРД достигается при значительно меньшем среднем давлении, чем в ЖРД. Так, в ДРД удельный импульс в 260 с достигается при давлении в КС всего 24 атм, тогда как удельный импульс 263,3 с в известном отечественном двигателе РД-107А достигается при давлении в КС 61,2 атм, которое в 2,5 раза выше. Отметим, что двигатель РД-107А работает на топливной паре керосин--кислород и используется в первой ступени ракеты-носителя "Союз-ФГ". Такое значительное снижение среднего давления в ДРД позволит в перспективе кардинально изменить массогабаритные характеристики ракетных двигателей и снизить требования к турбонасосным агрегатам.

    Вот и новая идея, и новые физические принципы.

    Один из результатов проекта — разработанное техническое задание на проведение опытно-конструкторской работы (ОКР) по созданию опытного образца ДРД. Основная проблема, которую планируется решить в рамках ОКР,— обеспечить непрерывную работу ДРД в течение длительного времени (десятки минут). Для этого потребуется разработать эффективную систему охлаждения стенок двигателя.

    Ввиду своего прорывного характера задача создания практического ДРД, несомненно, должна стать одной из приоритетных задач отечественного космического двигателестроения.

    Сергей Фролов, доктор физико-математических наук, Институт химической физики им. Н.Н. Семенова РАН, профессор НИЯУ-МИФИ


    Газ вместо керосина


    В 2014-2016 годах Министерством образования и науки РФ поддержан проект "Разработка технологий использования сжиженного природного газа (метан, пропан, бутан) в качестве топлива для ракетно-космической техники нового поколения и создание стендового демонстрационного образца ракетного двигателя". Проект предусматривает создание демонстрационного образца непрерывно-детонационного ракетного двигателя (ДРД), работающего на топливной паре "сжиженный природный газ (СПГ)--кислород". Исполнитель проекта — Центр импульсно-детонационного горения Института химической физики РАН. Индустриальный партнер проекта — Тураевское машиностроительное конструкторское бюро "Союз". В заявке на проект целесообразность использования в жидкостном ракетном двигателе (ЖРД) непрерывно-детонационного горения объяснялась более высоким термодинамическим КПД по сравнению с традиционным циклом, использующим медленное горение, а целесообразность использования СПГ объяснялась целым рядом преимуществ по сравнению с керосином: повышенным удельным импульсом тяги, доступностью и дешевизной, существенно меньшим сажеобразованием при горении и более высокими экологическими характеристиками. Теоретически замена керосина на СПГ в традиционном ЖРД сулит повышение удельного импульса на 3-4%, а переход от традиционного ЖРД к ДРД — на 13-15%.


    В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания.

    Интересно, что ещё в 1940 году советский физик Я.Б. Зельдович предложил идею детонационного двигателя в статье «Об энергетическом использовании детонационного сгорания». С тех пор над перспективной идеей работали многие учёные из разных стран, вперёд выходили то США, то Германия, то наши соотечественники.

    Летом, в августе 2016 года российским учёным удалось создать впервые в мире полноразмерный жидкостный реактивный двигатель, работающий на принципе детонационного сгорания топлива. Наша страна наконец-то за многие постперестроечные годы установила мировой приоритет в освоении новейшей техники.

    Чем же так хорош новый двигатель? В реактивном двигателе применяется энергия, выделяемая при сжигании смеси при постоянном давлении и неизменным пламенном фронте. Газовая смесь из топлива и окислителя при горении резко повышает температуру и столб пламени, вырывающийся из сопла, создаёт реактивную тягу.

    Детонационный двигатель / Фото: sdelanounas.ru

    При детонационном горении продукты реакции не успевают разрушиться, потому что этот процесс в 100 раз быстрее дефларгации и давлении при этом стремительно увеличивается, а объём остаётся неизменным. Выделение такого большого количества энергии действительно может разрушить двигатель автомобиля, поэтому такой процесс часто ассоциируется со взрывом.

    В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания. Поэтому специалисты так рьяно и приступили к разработке этой идеи.В обычном ЖРД, по сути, являющейся большой горелкой, главное не камера сгорания и сопло, а топливный турбонасосный агрегат (ТНА), создающий такое давление, чтобы топливо проникло в камеру. К примеру, в российском ЖРД РД-170 для ракет-носителей «Энергия» давление в камере сгорания 250 атм и насосу, подающему окислитель в зону сгорания приходиться создавать давление в 600 атм.

    В детонационном двигателе давление создаётся самой детонацией, представляющую бегущую волну сжатия в смеси топлива, в которой давление без всякого ТНА уже в 20 раз больше и турбонасосные агрегаты являются лишними. Чтобы было понятно, у американского «Шаттла» давление в камере сгорания 200 атм, а детонационному двигателю в таких условиях надо всего лишь 10 атм для подачи смеси - это как велосипедный насос и Саяно-Шушенская ГЭС.

    Двигатель на основе детонации в таком случае не только более простой и дешёвый на целый порядок, но гораздо мощнее и экономичнее, чем обычный ЖРД.На пути внедрения проекта детонационного двигателя встала проблема совладения с волной детонации. Это явление непросто взрывная волна, которая имеет скорость звука, а детонационная, распространяющаяся со скоростью 2500 м/сек, в ней нет стабилизации фронта пламени, за каждую пульсацию обновляется смесь и волна вновь запускается.

    Ранее русские и французские инженеры разрабатывали и строили реактивные пульсирующие двигатели, но не на принципе детонации, а на основе пульсации обычного горения. Характеристики таких ПуВРД были низкими и когда двигателестроители разработали насосы, турбины и компрессоры, наступил век реактивных двигателей и ЖРД, а пульсирующие остались на обочине прогресса. Светлые головы науки пытались объединить детонационное горение с ПуВРД, но частота пульсаций обычного фронта горения составляет не более 250 в секунду, а фронт детонации обладает скоростью до 2500 м/сек и частота его пульсаций достигает несколько тысяч в секунду. Казалось невозможным воплотить на практике такую скорость обновления смеси и при этом инициировать детонацию.

    В СЩА удалось построить такой детонационный пульсирующий двигатель и испытать его в воздухе, правда, проработал он всего 10 секунд, но приоритет остался за американскими конструкторами. Но уже в 60-х годах прошлого века советскому учёному Б.В. Войцеховскому и практически в то же время и американцу из университета в Мичигане Дж. Николсу пришла идея закольцевать в камере сгорания волну детонации.

    Изображение: sdelanounas.ru

    Как работает детонационный ЖРД

    Такой ротационный двигатель состоял из кольцевой камеры сгорания с форсунками, размещёнными по её радиусу для подачи топлива. Волна детонации бегает как белка в колесе по окружности, топливная смесь сжимается и выгорает, выталкивая продукты сгорания через сопло. В спиновом двигателе получаем частоту вращения волны в несколько тысяч в секунду, работа его подобна рабочему процессу в ЖРД, только более эффективно, благодаря детонации смеси топлива.

    В СССР и США, а позже в России ведутся работы по созданию ротационного детонационного двигателя с незатухающей волной, пониманию процессов, происходящих внутри, для чего была создана целая наука физико-химическая кинетика. Для расчёта условий незатухающей волны нужны были мощные ЭВМ, которые создали лишь в последнее время.

    В России над проектом такого спинового двигателя работают многие НИИ и КБ, среди которых двигателестроительная компания космической промышленности НПО «Энергомаш» . На помощь в разработке такого двигателя пришёл Фонд перспективных исследований, ведь финансирование от Министерства обороны добиться невозможно - им подавай только гарантированный результат.

    Тем не мене на испытаниях в Химках на «Энергомаше» был зафиксирован установившийся режим непрерывной спиновой детонации - 8 тысяч оборотов в секунду на смеси «кислород - керосин». При этом детонационные волны уравновешивали волны вибрации, а теплозащитные покрытия выдержали высокие температуры.

    Но не стоит обольщаться, ведь это лишь двигатель-демонстратор, проработавший весьма непродолжительное время и о характеристиках его ещё пока ничего не сказано. Но основное в том, что доказана возможность создания детонационного горения и создан полноразмерный спиновой двигатель именно в России, что останется в истории науки навсегда.

    В конце января появились сообщения о новых успехах российской науки и техники. Из официальных источников стало известно, что один из отечественных проектов перспективного реактивного двигателя детонационного типа уже прошел стадию испытаний. Это приближает момент полного завершения всех требуемых работ, по результатам которых космические или военные ракеты российской разработки смогут получить новые силовые установки с повышенными характеристиками. Более того, новые принципы работы двигателей могут найти применение не только в сфере ракет, но и в других областях.

    В последних числах января вице-премьер Дмитрий Рогозин рассказал отечественной прессе о последних успехах научно-исследовательских организаций. Среди прочих тем он затронул процесс создания реактивных двигателей, использующих новые принципы работы. Перспективный двигатель с детонационным горением уже был доведен до испытаний. По словам вице-премьера, применение новых принципов работы силовой установки позволяет получить значительный прирост характеристик. В сравнении с конструкциями традиционной архитектуры наблюдается рост тяги порядка 30%.

    Современные ракетные двигатели разных классов и типов, эксплуатируемые в различных областях, используют т.н. изобарический цикл или дефлаграционное горение. В их камерах сгорания поддерживается постоянное давление, при котором происходит медленное горение топлива. Двигатель на дефлаграционных принципах не нуждается в особо прочных агрегатах, однако ограничен в максимальных показателях. Повышение основных характеристик, начиная с определенного уровня, оказывается неоправданно сложным.

    Альтернатива двигателю с изобарическим циклом в контексте повышения характеристик – система с т.н. детонационным горением. В таком случае реакция окисления горючего происходит за ударной волной, с высокой скоростью перемещающейся по камере сгорания. Это предъявляет особые требования к конструкции двигателя, но при этом дает очевидные преимущества. С точки зрения эффективности сгорания топлива детонационное горение на 25% лучше дефлаграционного. Также отличается от горения с постоянным давлением увеличенной мощностью тепловыделения с единицы площади поверхности фронта реакции. В теории, возможно повышение этого параметра на три-четыре порядка. Как следствие, скорость реактивных газов можно увеличить в 20-25 раз.

    Таким образом, детонационный двигатель, отличаясь повышенным коэффициентом полезного действия, способен развивать большую тягу при меньшем расходе топлива. Его преимущества перед традиционными конструкциями очевидны, однако до недавнего времени прогресс в этой области оставлял желать лучшего. Принципы детонационного реактивного двигателя были сформулированы еще в 1940 году советским физиком Я.Б. Зельдовичем, но готовые изделия подобного рода все еще не дошли до эксплуатации. Главные причины отсутствия реальных успехов – проблемы с созданием достаточно прочной конструкции, а также сложность запуска и последующего поддержания ударной волны при применении существующих топлив.

    Один из последних отечественных проектов в области детонационных ракетных двигателей стартовал в 2014 году и разрабатывается в НПО «Энергомаш» им. академика В.П. Глушко. Согласно доступным данным, целью проекта с шифром «Ифрит» являлось изучение основных принципов новой техники с последующим созданием жидкостного ракетного двигателя, использующего керосин и газообразный кислород. В основу нового двигателя, названного по имени огненных демонов из арабского фольклора, укладывался принцип спинового детонационного горения. Таким образом, в соответствии с основной идеей проекта, ударная волна должна непрерывно перемещаться по кругу внутри камеры сгорания.

    Головным разработчиком нового проекта стало НПО «Энергомаш», а точнее созданная на его базе специальная лаборатория. Кроме того, к работам привлекли несколько других научно-исследовательских и проектных организаций. Программа получила поддержку Фонда перспективных исследований. Совместными усилиями все участники проекта «Ифрит» смогли сформировать оптимальный облик перспективного двигателя, а также создать модельную камеру сгорания с новыми принципами работы.

    Для изучения перспектив всего направления и новых идей несколько лет назад была построена т.н. модельная детонационная камера сгорания, соответствующая требованиям проекта. Такой опытный двигатель с сокращенной комплектацией должен был использовать в качестве горючего жидкий керосин. В качестве окислителя предлагался газообразный кислород. В августе 2016 года начались испытания опытной камеры. Важно, что впервые в истории проект подобного рода удалось довести до стадии стендовых проверок. Ранее отечественные и зарубежные детонационные ракетные двигатели разрабатывались, но не испытывались.

    В ходе испытаний модельного образца удалось получить весьма интересные результаты, показывающие правильность использованных подходов. Так, за счет использования правильных материалов и технологий получилось довести давление внутри камеры сгорания до 40 атмосфер. Тяга опытного изделия достигла 2 т.

    В рамках проекта «Ифрит» были получены определенные результаты, но отечественный детонационный двигатель на жидком топливе пока еще далек от полноценного практического применения. Перед внедрением такого оборудования в новые проекты техники конструкторам и ученым предстоит решить целый ряд самых серьезных задач. Только после этого ракетно-космическая отрасль или оборонная промышленность смогут приступить к реализации потенциала новой техники на практике.

    В середине января «Российская газета» опубликовала интервью с главным конструктором НПО «Энергомаш» Петром Левочкиным, темой которого стало текущее положение дел и перспективы детонационных двигателей. Представитель предприятия-разработчика напомнил об основных положениях проекта, а также затронул тему достигнутых успехов. Кроме того, он рассказал о возможных сферах применения «Ифрита» и подобных ему конструкций.

    К примеру, детонационные двигатели могут использоваться в гиперзвуковых летательных аппаратах. П. Левочкин напомнил, что двигатели, сейчас предлагаемые для применения на такой технике, используют дозвуковое горение. При гиперзвуковой скорости аппарата полета поступающий в двигатель воздух необходимо затормозить до звукового режима. Однако энергия торможения должна приводить к дополнительным тепловым нагрузкам на планер. В детонационных двигателях скорость горения топлива достигает, как минимум, М=2,5. Благодаря этому появляется возможность повысить скорость полета летательного аппарата. Подобная машина с двигателем детонационного типа сможет разгоняться до скоростей, в восемь раз превышающих скорость звука.

    Впрочем, реальные перспективы ракетных двигателей детонационного типа пока не слишком велики. По словам П. Левочкина, мы «только приоткрыли дверь в область детонационного горения». Ученым и конструкторам предстоит изучить множество вопросов, и только после этого можно будет заниматься созданием конструкций с практическим потенциалом. Из-за этого космической отрасли еще долго предстоит использовать жидкостные двигатели традиционной конструкции, что, однако, не отменяет возможности их дальнейшего совершенствования.

    Интересен тот факт, что детонационный принцип горения находит применение не только в сфере ракетных двигателей. Уже существует отечественный проект авиационной системы с камерой сгорания детонационного типа, работающей по импульсному принципу. Опытный образец такого рода был доведен до испытаний, и в будущем может дать старт новому направлению. Новые двигатели с детонационным горением могут найти применение в самых разных сферах и частично заменить газотурбинные или турбореактивные двигатели традиционных конструкций.

    Отечественный проект детонационного авиационного двигателя разрабатывается в ОКБ им. А.М. Люльки. Информация об этом проекте впервые была представлена на прошлогоднем международном военно-техническом форуме «Армия-2017». На стенде предприятия-разработчика присутствовали материалы по различным двигателям, как серийным, так и находящимся на стадии разработки. Среди последних был перспективный детонационный образец.

    Суть нового предложения заключается в применении нестандартной камеры сгорания, способной осуществлять импульсное детонационное горение топлива в воздушной атмосфере. При этом частота «взрывов» внутри двигателя должна достигать 15-20 кГц. В перспективе возможно дополнительное увеличение этого параметра, в результате чего шум двигателя уйдет за пределы диапазона, воспринимаемого человеческим ухом. Такие особенности двигателя могут представлять определенный интерес.

    Однако главные преимущества новой силовой установки связаны с повышенными характеристиками. Стендовые испытания опытных изделий показали, что они примерно на 30% превосходят традиционные газотурбинные двигатели по удельным показателям. Ко времени первой публичной демонстрации материалов по двигателю ОКБ им. А.М. Люльки смогло получить и достаточно высокие эксплуатационные характеристики. Опытный двигатель нового типа смог без перерыва проработать 10 минут. Суммарная наработка этого изделия на стенде на тот момент превысила 100 часов.

    Представители предприятия-разработчика указывали, что уже сейчас можно создать новый детонационный двигатель с тягой 2-2,5 т, пригодный для установки на легкие самолеты или беспилотные летательные аппараты. В конструкции такого двигателя предлагается использовать т.н. резонаторные устройства, отвечающие за правильный ход горения топлива. Важным преимуществом нового проекта является принципиальная возможность установки таких устройств в любом месте планера.

    Специалисты ОКБ им. А.М. Люльки работают над авиационными двигателями с импульсным детонационным горением более трех десятилетий, но пока проект не выходит из научно-исследовательской стадии и не имеет реальных перспектив. Главная причина – отсутствие заказа и необходимого финансирования. Если проект получит необходимую поддержку, то уже в обозримом будущем может быть создан образец двигателя, пригодный для использования на различной технике.

    К настоящему времени российские ученые и конструкторы успели показать весьма примечательные результаты в области реактивных двигателей, использующих новые принципы работы. Существует сразу несколько проектов, пригодных для применения в ракетно-космической и гиперзвуковой областях. Кроме того, новые двигатели могут применяться и в «традиционной» авиации. Некоторые проекты пока находятся на ранних стадиях и еще не готовы к проверкам и другим работам, тогда как в иных направлениях уже были получены самые примечательные результаты.

    Исследуя тематику реактивных двигателей с детонационным горением, российские специалисты смогли создать стендовый модельный образец камеры сгорания с желаемыми характеристиками. Опытное изделие «Ифрит» уже прошло испытания, в ходе которых было собрано большое количество разнообразной информации. С помощью полученных данных развитие направления будет продолжаться.

    Освоение нового направления и перевод идей в практически применимую форму займет немало времени, и по этой причине в обозримом будущем космические и армейские ракеты в обозримом будущем будут комплектоваться только традиционными жидкостными двигателями. Тем не менее, работы уже вышли из чисто теоретической стадии, и теперь каждый тестовый запуск опытного двигателя приближает момент строительства полноценных ракет с новыми силовыми установками.

    Прошли успешные испытания так называемых детонационных ракетных двигателей, давшие очень интересные результаты. Опытно-конструкторские работы в этом направлении будут продолжены.

    На энергомашевских двигателях взлетает более девяносто процентов ракет-носителей в России.. Фото: Олеся Курпяева

    Детонация - это взрыв. Можно ли ее сделать управляемой? Можно ли на базе таких двигателей создать гиперзвуковое оружие? Какие ракетные двигатели будут выводить необитаемые и пилотируемые аппараты в ближний космос? Об этом наш разговор с заместителем гендиректора - главным конструктором "НПО Энергомаш им. академика В.П. Глушко" Петром Левочкиным.

    Петр Сергеевич, какие возможности открывают новые двигатели?

    Петр Левочкин: Если говорить о ближайшей перспективе, то сегодня мы работаем над двигателями для таких ракет, как "Ангара А5В" и "Союз-5", а также другими, которые находятся на предпроектной стадии и неизвестны широкой публике. Вообще наши двигатели предназначены для отрыва ракеты от поверхности небесного тела. И она может быть любой - земной, лунной, марсианской. Так что, если будут реализовываться лунная или марсианская программы, мы обязательно примем в них участие.

    Какова эффективность современных ракетных двигателей и есть ли пути их совершенствования?

    Петр Левочкин: Если говорить об энергетических и термодинамических параметрах двигателей, то можно сказать, что наши, как, впрочем, и лучшие зарубежные химические ракетные двигатели на сегодняшний день достигли определенного совершенства. Например, полнота сгорания топлива достигает 98,5 процента. То есть практически вся химическая энергия топлива в двигателе преобразуется в тепловую энергию истекающей струи газа из сопла.

    Совершенствовать двигатели можно по разным направлениям. Это и применение более энергоемких компонентов топлива, введение новых схемных решений, увеличение давления в камере сгорания. Другим направлением является применение новых, в том числе аддитивных, технологий с целью снижения трудоемкости и, как следствие, снижение стоимости ракетного двигателя. Все это ведет к снижению стоимости выводимой полезной нагрузки.

    Однако при более детальном рассмотрении становится ясно, что повышение энергетических характеристик двигателей традиционным способом малоэффективно.

    Использование управляемого взрыва топлива может дать ракете скорость в восемь раз выше скорости звука

    Почему?

    Петр Левочкин: Увеличение давления и расхода топлива в камере сгорания, естественно, увеличит тягу двигателя. Но это потребует увеличение толщины стенок камеры и насосов. В результате сложность конструкции и ее масса возрастают, энергетический выигрыш оказывается не таким уж и большим. Овчинка выделки стоить не будет.

    То есть ракетные двигатели исчерпали ресурс своего развития?

    Петр Левочкин: Не совсем так. Выражаясь техническим языком, их можно совершенствовать через повышение эффективности внутридвигательных процессов. Существуют циклы термодинамического преобразования химической энергии в энергию истекающей струи, которые гораздо эффективнее классического горения ракетного топлива. Это цикл детонационного горения и близкий к нему цикл Хамфри.

    Сам эффект топливной детонации открыл наш соотечественник - впоследствии академик Яков Борисович Зельдович еще в 1940 году. Реализация этого эффекта на практике сулила очень большие перспективы в ракетостроении. Неудивительно, что немцы в те же годы активно исследовали детонационный процесс горения. Но дальше не совсем удачных экспериментов дело у них не продвинулось.

    Теоретические расчеты показали, что детонационное горение на 25 процентов эффективней, чем изобарический цикл, соответстветствующий сгоранию топлива при постоянном давлении, который реализован в камерах современных жидкостно-рактивных двигателей.

    А чем обеспечиваются преимущества детонационного горения по сравнению с классическим?

    Петр Левочкин: Классический процесс горения - дозвуковой. Детонационный - сверхзвуковой. Быстрота протекания реакции в малом объеме приводит к огромному тепловыделению - оно в несколько тысяч раз выше, чем при дозвуковом горении, реализованному в классических ракетных двигателях при одной и той же массе горящего топлива. А для нас, двигателистов, это означает, что при значительно меньших габаритах детонационного двигателя и при малой массе топлива можно получить ту же тягу, что и в огромных современных жидкостных ракетных двигателях.

    Не секрет, что двигатели с детонационным горением топлива разрабатывают и за рубежом. Каковы наши позиции? Уступаем, идем на их уровне или лидируем?

    Петр Левочкин: Не уступаем - это точно. Но и сказать, что лидируем, не могу. Тема достаточно закрыта. Один из главных технологических секретов состоит в том, как добиться того, чтобы горючее и окислитель ракетного двигателя не горели, а взрывались, при этом не разрушая камеру сгорания. То есть фактически сделать настоящий взрыв контролируемым и управляемым. Для справки: детонационным называют горение топлива во фронте сверхзвуковой ударной волны. Различают импульсную детонацию, когда ударная волна движется вдоль оси камеры и одна сменяет другую, а также непрерывную (спиновую) детонацию, когда ударные волны в камере движутся по кругу.

    Насколько известно, с участием ваших специалистов проведены экспериментальные исследования детонационного горения. Какие результаты были получены?

    Петр Левочкин: Были выполнены работы по созданию модельной камеры жидкостного детонационного ракетного двигателя. Над проектом под патронажем Фонда перспективных исследований работала большая кооперация ведущих научных центров России. В их числе Институт гидродинамики им. М.А. Лаврентьева, МАИ, "Центр Келдыша", Центральный институт авиационного моторостроения им. П.И. Баранова, Механико-математический факультет МГУ. В качестве горючего мы предложили использовать керосин, а окислителя - газообразный кислород. В процессе теоретических и экспериментальных исследований была подтверждена возможность создания детонационного ракетного двигателя на таких компонентах. На основе полученных данных мы разработали, изготовили и успешно испытали детонационную модельную камеру с тягой в 2 тонны и давлением в камере сгорания около 40 атм.

    Данная задача решалась впервые не только в России, но и мире. Поэтому, конечно, проблемы были. Во-первых, связанные с обеспечением устойчивой детонации кислорода с керосином, во-вторых, с обеспечением надежного охлаждения огневой стенки камеры без завесного охлаждения и массой других проблем, суть которых понятна лишь специалистам.

    Можно ли использовать детонационный двигатель в гиперзвуковых ракетах?

    Петр Левочкин: И можно, и нужно. Хотя бы потому, что горение топлива в нем сверхзвуковое. А в тех двигателях, на которых сейчас пытаются создать управляемые гиперзвуковые летательные аппараты, горение дозвуковое. И это создает массу проблем. Ведь если горение в двигателе дозвуковое, а двигатель летит, допустим, со скоростью пять махов (один мах равен скорости звука), надо встречный поток воздуха затормозить до звукового режима. Соответственно, вся энергия этого торможения переходит в тепло, которое ведет к дополнительному перегреву конструкции.

    А в детонационном двигателе процесс горения идет при скорости как минимум в два с половиной раза выше звуковой. И, соответственно, на эту величину мы можем увеличить скорость летательного аппарата. То есть уже речь идет не о пяти, а о восьми махах. Это реально достижимая на сегодняшний день скорость летательных аппаратов с гиперзвуковыми двигателями, в которых будет использоваться принцип детонационного горения.

    Петр Левочкин: Это сложный вопрос. Мы только приоткрыли дверь в область детонационного горения. Еще очень много неизученного осталось за скобками нашего исследования. Сегодня совместно с РКК "Энергия" мы пытаемся определить, как может в перспективе выглядеть двигатель в целом с детонационной камерой применительно к разгонным блокам.

    На каких двигателях человек полетит к дальним планетам?

    Петр Левочкин: По-моему мнению, еще долго мы будем летать на традиционных ЖРД занимаясь их совершенствованием. Хотя безусловно развиваются и другие типы ракетных двигателей, например, электроракетные (они значительно эффективнее ЖРД - удельный импульс у них в 10 раз выше). Увы, сегодняшние двигатели и средства выведения не позволяют говорить о реальности массовых межпланетных, а уж тем более межгалактических перелетов. Здесь пока все на уровне фантастики: фотонные двигатели, телепортация, левитация, гравитационные волны. Хотя, с другой стороны, всего сто с небольшим лет назад сочинения Жюля Верна воспринимались как чистая фантастика. Возможно, революционного прорыва в той сфере, где мы работаем, ждать осталось совсем недолго. В том числе и в области практического создания ракет, использующих энергию взрыва.

    Досье "РГ"

    "Научно-производственное объединение Энергомаш" основано Валентином Петровичем Глушко в 1929 году. Сейчас носит его имя. Здесь разрабатывают и выпускают жидкостные ракетные двигатели для I, в отдельных случаях II ступеней ракет-носителей. В НПО разработано более 60 различных жидкостных реактивных двигателей. На двигателях "Энергомаша" был запущен первый спутник, состоялся полет первого человека в космос, запущен первый самоходный аппарат "Луноход-1". Сегодня на двигателях, разработанных и произведенных в НПО "Энергомаш", взлетает более девяноста процентов ракет-носителей в России.

    Инфографика "РГ" / Александр Смирнов / Сергей Птичкин