Войти
Автомобильный портал - Двигатель. Замена свечей. Подсветка. Права и вождение
  • Калорийность и состав горбуши Горбуша запеченная в духовке калорийность на 100
  • Щавелевый суп с курицей калорийность
  • Как правильно и вкусно готовить шампиньоны
  • Лучшие рецепты майонеза в домашних условиях: фото, видео, советы, как сделать блендером или миксером
  • Диетическая запеканка из кабачков с сыром Низкокалорийная запеканка из кабачков
  • Желатин растворять для желе сколько воды
  • Современные проблемы науки и образования. Газовый двигатель Чудеса непосредственного впрыска

    Современные проблемы науки и образования. Газовый двигатель Чудеса непосредственного впрыска

    Характеризуется рядом величин. Одна из них – степень сжатия двигателя. Важно не путать ее с компрессией – значением максимального давления в цилиндре мотора.

    Что такое степень сжатия

    Данная степень – это соотношение объема цилиндра двигателя к объему камеры сгорания. Иначе можно сказать, что значение компрессии – отношение объема свободного места над поршнем, когда тот находится в нижней мертвой точке, к аналогичному объему при нахождении поршня в верхней точке.

    Выше упоминалось, что компрессия и степень сжатия – не синонимы. Различие касается и обозначений, если компрессию измеряют в атмосферах, степень сжатия записывается как некоторое отношение, например, 11:1, 10:1, и так далее. Поэтому нельзя точно сказать, в чем измеряют степень сжатия в двигателе – это «безразмерный» параметр, зависящий от других характеристик ДВС.

    Условно степень сжатия можно описать также как разницу между давлением в камере при подаче смеси (или дизтоплива в случае с дизельными двигателями) и при воспламенении порции горючего. Данный показатель зависит от модели и типа двигателя и обусловлен его конструкцией. Степень сжатия может быть:

    • высокой;
    • низкой.

    Расчет сжатия

    Рассмотрим, как узнать степень сжатия двигателя.

    Она вычисляется по формуле:

    Здесь Vр означает рабочий объем отдельного цилиндра, а Vс – значение объема камеры сгорания. Формула показывает важность значения объема камеры: если его, например, снизить, то параметр сжатия станет больше. То же произойдет и в случае увеличения объема цилиндра.

    Чтобы узнать рабочий объем, нужно знать диаметр цилиндра и ход поршня. Вычисляется показатель по формуле:

    Здесь D – диаметр, а S – ход поршня.

    Иллюстрация:


    Поскольку камера сгорания имеет сложную форму, ее объем обычно измеряется методом заливания в нее жидкости. Узнав, сколько воды поместилось в камеру, можно определить и ее объем. Для определения удобно использовать именно воду из-за удельного веса в 1 грамм на куб. см – сколько залилось грамм, столько и «кубиков» в цилиндре.

    Альтернативный способ, как определить степень сжатия двигателя – обратиться к документации на него.

    На что влияет степень сжатия

    Важно понимать, на что влияет степень сжатия двигателя: от нее прямо зависит компрессия и мощность. Если сделать сжатие больше, силовой агрегат получит больший КПД, поскольку уменьшится удельный расход горючего.

    Степень сжатия бензинового двигателя определяет, горючее с каким октановым числом он будет потреблять. Если топливо низкооктановое, это приведет к неприятному явлению детонации, а слишком высокое октановое число вызовет нехватку мощности – двигатель с малой компрессией просто не сможет обеспечивать нужное сжатие.

    Таблица основных соотношений степеней сжатия и рекомендуемых топлив для бензиновых ДВС:

    Сжатие Бензин
    До 10 92
    10.5-12 95
    От 12 98

    Интересно: бензиновые турбированные двигатели функционируют на горючем с большим октановым числом, чем аналогичные ДВС без наддува, поэтому их степень сжатия выше.

    Еще больше она у дизелей. Поскольку в дизельных ДВС развиваются высокие давления, данный параметр у них также будет выше. Оптимальная степень сжатия дизельного двигателя находится в пределах от 18:1 до 22:1, в зависимости от агрегата.

    Изменение коэффициента сжатия

    Зачем менять степень?

    На практике такая необходимость возникает нечасто. Менять сжатие может понадобиться:

    • при желании форсировать двигатель;
    • если нужно приспособить силовой агрегат под работу на нестандартном для него бензине, с отличающимся от рекомендованного октановым числом. Так поступали, например, советские автовладельцы, поскольку комплектов для переоборудования машины на газ в продаже не встречалось, но желание сэкономить на бензине имелось;
    • после неудачного ремонта, чтобы устранить последствия некорректного вмешательства. Это может быть тепловая деформация ГБЦ, после которой нужна фрезеровка. После того, как повысили степень сжатия двигателя снятием слоя металла, работа на изначально предназначенном для него бензине становится невозможной.

    Иногда меняют степень сжатия при конвертации автомобилей для езды на метановом топливе. У метана октановое число – 120, что требует повышать сжатие для ряда бензиновых автомобилей, и понижать – для дизелей (СЖ находится в пределах 12-14).

    Перевод дизеля на метан влияет на мощность и ведет к некоторой потере таковой, что можно компенсировать турбонаддувом. Турбированный двигатель требует дополнительного снижения степени сжатия. Может потребоваться доработка электрики и датчиков, замена форсунок дизельного мотора на свечи зажигания, новый комплект цилиндро-поршневой группы.

    Форсирование двигателя

    Чтобы снимать больше мощности или получить возможность ездить на более дешевых сортах топлива, ДВС можно форсировать путем изменения объема камеры сгорания.

    Для получения дополнительной мощности двигатель следует форсировать, увеличивая степень сжатия.

    Важно: заметный прирост по мощности будет лишь на том двигателе, который штатно работает с более низкой степенью сжатия. Так, например, если ДВС с показателем 9:1 тюнингован до 10:1, он выдаст больше дополнительных «лошадей», чем двигатель со стоковым параметром 12:1, форсированный до 13:1.

    Возможные следующие методы, как увеличить степень сжатия двигателя:

    • установка тонкой прокладки ГБЦ и доработка головки блока;
    • расточка цилиндров.

    Под доработкой ГБЦ подразумевают фрезеровку ее нижней части, соприкасающейся с самим блоком. ГБЦ становится короче, благодаря чему уменьшается объем камеры сгорания и растет степень сжатия. То же происходит и при монтаже более тонкой прокладки.

    Важно: эти манипуляции могут также потребовать установки новых поршней с увеличенными клапанными выемками, поскольку в ряде случаев возникает риск встречи поршня и клапанов. В обязательном порядке настраиваются заново фазы газораспределения.

    Расточка БЦ также ведет к установке новых поршней под соответствующий диаметр. В результате растет рабочий объем и становится больше степень сжатия.

    Дефорсирование под низкооктановое топливо

    Такая операция проводится, когда вопрос мощности вторичен, а основная задача – приспособить двигатель под другое горючее. Это делается путем снижения степени сжимания, что позволяет двигателю работать на малооктановом бензине без детонации. Кроме того, налицо и определенная финансовая экономия на стоимости горючего.

    Интересно: подобное решение нередко используется для карбюраторных двигателей старых машин. Для современных инжекторных ДВС с электронным управлением дефорсирование крайне не рекомендуется.

    Основной способ, как уменьшить степень сжатия двигателя — сделать прокладку ГБЦ более толстой. Для этого берут две стандартные прокладки, между которыми делают алюминиевую прокладку-вставку. В результате растет объем камеры сгорания и высота ГБЦ.

    Некоторые интересные факты

    Метанольные двигатели гоночных машин имеют сжатие более 15:1. Для сравнения, стандартных карбюраторный двигатель, потребляющий неэтилированный бензин, имеет сжатие максимум 1.1:1.

    Из серийных образцов моторов на бензине со сжатием 14:1 на рынке присутствуют образцы от Mazda (серия Skyactiv-G), ставящиеся, например, на CX-5. Но их фактическая СЖ находится в пределах 12, поскольку в данных моторах задействован так называемый «цикл Аткинсона», когда смесь сжимается в 12 раз после позднего закрытия клапанов. Эффективность таких двигателей измеряется не по сжатию, а по степени расширения.

    В середине XX века в мировом двигателестроении, особенно в США, наблюдалась тенденция к увеличению степени сжатия. Так, к 70-м основная масса образцов американского автопрома имела СЖ от 11 до 13:1. Но штатная работа таких ДВС требовала использования высокооктанового бензина, который в то время умели получать только процессом этилирования – добавлением тетраэтилсвинца, высокотоксичного компонента. Когда в 1970-х годах появились новые экологические стандарты, этилирование стали запрещать, и это привело к обратной тенденции – снижению СЖ в серийных образцах двигателей.

    Современные двигатели имеют систему автоматической регуляции угла зажигания, которая позволяет ДВС работать на «неродном» топливе – например, 92 вместо 95, и наоборот. Система управления УОЗ помогает избежать детонации и других неприятных явлений. Если же ее нет, то, например, залив высокооктановый бензин двигатель, не рассчитанный на такое горючее, можно потерять в мощности и даже залить свечи, поскольку зажигание будет поздним. Ситуацию можно поправить ручным выставлением УОЗ по инструкции к конкретной модели автомобиля.

    МАШИНОСТРОЕНИЕ

    УДК 62l.43.052

    ТЕХНИЧЕСКАЯ РЕАЛИЗАЦИЯ ИЗМЕНЕНИЯ СТЕПЕНИ СЖАТИЯ МАЛОЛИТРАЖНОГО ДВИГАТЕЛЯ, КОТОРЫЙ РАБОТАЕТ НА ПРИРОДНОМ ГАЗЕ

    Ф.И. Абрамчук, профессор, д.т.н., А.Н. Кабанов, доцент, к.т.н.,

    А.П. Кузьменко, аспирант, ХНАДУ

    Аннотация. Приведены результаты технической реализации изменения степени сжатия на двигателе МеМЗ-307, который переоборудован для работы на природном газе.

    Ключевые слова: степень сжатия, автомобильный двигатель, природный газ.

    ТЕХНІЧНА РЕАЛІЗАЦІЯ ЗМІНИ СТУПЕНЯ СТИСКАННЯ МАЛОЛІТРАЖНОГО АВТОМОБІЛЬНОГО ДВИГУНА,

    ЩО ПРАЦЮЄ НА ПРИРОДНОМУ ГАЗІ

    Ф.І. Абрамчук, професор, д.т.н., О.М. Кабанов, доцент, к.т.н.,

    А.П. Кузьменко, аспірант, ХНАДУ

    Анотація. Наведено результати технічної реалізації зміни ступеня стискання двигуна МеМЗ-307, переобладнаний для роботи на природному газі.

    Ключевые слова: ступінь стискання, автомобільний двигун, природний газ.

    TECHNICAL REALIZATION OF COMPRESSION RATIO VARIATION OF SMALL-CAPACITY AUTOMOTIVE NATURAL GAS POWERED ENGINE

    F. Abramchuk, Professor, Doctor of Technical Science, A. Kabanov, Associate Professor, Doctor of Technical Science, A. Kuzmenko, postgraduate, KhNAHU

    Abstract. The results of technical realization of compression ratio variation of MeMZ-3Q7 engine converted for natural gas running are given.

    Key words: compression ratio, automotive engine, natural gas.

    Введение

    Создание и успешная эксплуатация чисто газовых двигателей, которые работают на природном газе, зависят от правильного выбора основных параметров рабочего процесса, определяющих их технические, экономические и экологические характеристики. В первую очередь это касается выбора степени сжатия.

    Природный газ, имея высокое октановое число (110-130), позволяет повысить степень сжатия. Максимальное значение степени

    сжатия, исключающее детонацию, можно в первом приближении выбрать расчетным путем. Однако проверить и уточнить расчетные данные возможно только экспериментально.

    Анализ публикаций

    В работе при переводе бензинового двигателя (Vh = 1 л) автомобиля VW POLO на природный газ упрощена форма огневой поверхности поршня. Уменьшение объема камеры сжатия привело к увеличению степени сжатия с 10,7 до 13,5.

    На двигателе Д21А для снижения степени сжатия с 16,5 до 9,5 дообрабатывался поршень . Камера сгорания полусферического типа для дизеля изменена под рабочий процесс газового двигателя с искровым зажиганием.

    При конвертации дизеля ЯМЗ-236 в газовый двигатель степень сжатия с 16,2 до 12 уменьшена также за счет дообработки поршня .

    Цель и постановка задачи

    Целью работы является разработка конструкции деталей камеры сгорания двигателя МеМЗ-307, позволяющих обеспечить степень сжатия е = 12 и е = 14 для проведения экспериментальных исследований.

    Выбор подхода к изменению степени сжатия

    Для малолитражного бензинового двигателя, конвертируемого в газовый, изменение степени сжатия означает её увеличение по сравнению с базовым ДВС. Выполнить эту задачу можно несколькими способами.

    В идеальном случае на двигатель желательна установка системы изменения степени сжатия, позволяющей выполнять эту задачу в режиме реального времени, в том числе не прерывая работы двигателя. Однако такие системы очень дорогие и сложные в конструкции и эксплуатации, требуют внесения существенных изменений в конструкцию, а также являются элементом ненадежности двигателя.

    Изменять степень сжатия можно также за счет увеличения количества или толщины прокладок между головкой и блоком цилиндров. Этот способ дешёвый, однако при этом увеличивается вероятность прогорания прокладок при нарушении нормального процесса сгорания топлива. Кроме того, такой способ регулирования степени сжатия отличается низкой точностью, так как значение е будет зависеть от силы затяжки гаек на шпильках головки блока и качества изготовления прокладок. Чаще всего такой способ используют для понижения степени сжатия.

    Использование накладок на поршни технически сложно, так как возникает проблема надежного крепления относительно тонкой накладки (около 1 мм) к поршню и надёжной работы этого крепления в условиях камеры сгорания.

    Оптимальным вариантом является изготовление комплектов поршней, каждый из которых обеспечивает заданную степень сжатия. Этот способ требует частичной разборки двигателя для изменения степени сжатия, однако обеспечивает достаточно высокую точность значения е в эксперименте и надежность работы двигателя с измененной степенью сжатия (не снижается прочность и надёжность конструктивных элементов двигателя). К тому же этот способ сравнительно дешёвый.

    Результаты исследований

    Суть задачи состояла в том, чтобы, используя положительные качества природного газа (высокое октановое число) и особенности смесеобразования, компенсировать потерю мощности при работе двигателя на данном топливе. Для выполнения поставленной задачи было решено изменять степень сжатия.

    Согласно плану эксперимента степень сжатия должна изменяться от е = 9,8 (серийная комплектация) до е = 14. Целесообразно промежуточное значение степени сжатия выбрать е = 12 (как среднее арифметическое крайних значений е). В случае необходимости возможно изготовление комплектов поршней, обеспечивающих другие промежуточные значения степени сжатия.

    Для технической реализации указанных степеней сжатия были выполнены расчеты, конструкторские разработки и экспериментально проверенные объемы камер сжатия методом проливки. Результаты проливки указаны в таблицах 1 и 2.

    Таблица 1 Результаты проливки камеры сгорания в головке цилиндров

    1 цил. 2 цил. 3 цил. 4 цил.

    22,78 22,81 22,79 22,79

    Таблица 2 Результаты проливки камеры сгорания в поршнях (поршень установлен в цилиндр)

    1 цил. 2 цил. 3 цил. 4 цил.

    9,7 9,68 9,71 9,69

    Толщина прокладки в сжатом состоянии составляет 1 мм. Утопание поршня относительно плоскости блока цилиндров составляет 0,5 мм, что было определено с помощью обмеров.

    Соответственно объем камеры сгорания Ус будет состоять из объема в головке цилиндров Уг, объема в поршне Уп и объема щели между поршнем и головкой цилиндра (уто-пание поршня относительно плоскости блока цилиндров + толщина прокладки) Ущ = 6,6 см3.

    Ус = 22,79 + 9,7 + 4,4 = 36,89 (см3).

    Принято решение - степень сжатия изменять за счет изменения объема камеры сгорания путем изменения геометрии головки поршня, так как данный способ позволяет реализовать все варианты степени сжатия, и при этом есть возможность вернуться к серийной комплектации.

    На рис. 1 приведена серийная комплектация деталей камеры сгорания с объемами в поршне Уп = 7,5 см3.

    Рис. 1. Серийная комплектация деталей камеры сгорания Ус = 36,9 см3 (е = 9,8)

    Для получения степени сжатия е = 12 достаточно комплектовать камеру сгорания поршнем с плоским днищем, в котором выполнены две небольшие выборки общим объемом

    0,1 см3, предотвращающие встречу впускных и выпускных клапанов с поршнем во время

    перекрытия. В этом случае объем камеры сжатия равен

    Ус = 36,9 - 7,4 = 29,5 (см3).

    В этом случае зазор между поршнем и головкой цилиндров остается 8 = 1,5 мм. Конструкция камеры сгорания, обеспечивающая є = 12, показана на рис. 2.

    Рис. 2. Комплектация деталей камеры сгорания газового двигателя для получения степени сжатия є = 12 (Ус = 29,5 м3)

    Реализовать степень сжатия є = 14 принято за счет увеличения высоты поршня с плоским днищем на И = 1 мм. В данном случае поршень также имеет две выборки под клапаны общим объемом 0,2 см3. Объем камеры сжатия уменьшается на

    ДУ = - И = . 0,1 = 4,42 (см3).

    Такая комплектация деталей камеры сгорания дает объем

    Ус = 29,4 - 4,22 = 25,18 (см3).

    На рис. 3 показана комплектация камеры сгорания, обеспечивающая степень сжатия є = 13,9.

    Зазор между огневой поверхностью поршня и головкой цилиндра составляет 0,5 мм, что достаточно для нормальной работы деталей.

    Рис. 3. Комплектация деталей камеры сгорания газового двигателя с е = 13,9 (Ус = 25,18 см3)

    1. Упрощение геометрической формы огневой поверхности поршня (плоская головка с двумя маленькими выборками) позволило увеличить степень сжатия с 9,8 до 12.

    2. Уменьшение зазора до 5 = 0,5 мм между головкой цилиндра и поршнем в ВМТ и упрощение геометрической формы огневой по-

    верхности поршня позволило увеличить є до 13,9 единиц.

    Литература

    1. По материалам сайта: www.empa.ch

    2. Бганцев В.Н. Газовый двигатель на базе

    четырехтактного дизеля общего назначения / В.Н. Бганцев, А.М. Левтеров,

    B.П. Мараховский // Мир техники и технологий. - 2003. - №10. - С. 74-75.

    3. Захарчук В.І. Розрахунково-експеримен-

    тальне дослідження газового двигуна, переобладнаного з дизеля / В.І. Захарчук, О.В. Сітовський, І.С. Козачук // Автомобильный транспорт: сб. науч. тр. -Харьков: ХНАДУ. - 2005. - Вып. 16. -

    4. Богомолов В.А. Особенности конструкции

    экспериментальной установки для проведения исследований газового двигателя 64 13/14 с искровым зажиганием / В.А. Богомолов, Ф.И. Абрамчук, В.М. Ма-нойло и др. // Вестник ХНАДУ: сб. науч. тр. - Харьков: ХНАДУ. -2007. - № 37. - С. 43-47.

    Рецензент: М. А. Подригало, профессор, д.т.н., ХНАДУ.

    Д изельный двигатель полностью работающий на метане позволит сэкономить на топливе до 60% от суммы обычных затрат и конечно существенно сократить загрязнение окружающей среды.

    Мы можем перевести практически любой дизельный двигатель на использование метана, как газомоторного топлива.

    Не ждите завтра, начинайте экономить сегодня!

    Как дизельный двигатель может работать на метане?

    Дизельный двигатель является двигателем, воспламенение топлива в котором осуществляется при нагревании от сжатия. Стандартный дизельный двигатель не может работать на газовом топливе, потому что метан обладает существенно более высокой температурой воспламенения чем дизельное топливо (ДТ — 300-330 С, метан — 650 С) , которая не может быть достигнута при степенях сжатия, используемых в дизельных двигателях.

    Второй причиной, по которой дизельный двигатель не сможет работать на газовом топливе является явление детонации, т.е. не штатного (взрывообразного горения топлива, которое возникает при избыточной степени сжатия. Для дизельных двигателей используются степень сжатия топливо-воздушной смеси в 14-22 раза, метановый двигатель может иметь степень сжатия до 12-16 раз.

    Поэтому, для перевода дизельного двигателя в газомоторный режим потребуется сделать две основных вещи:

    • Снизить степень сжатия двигателя
    • Установить искровую систему зажигания

    После этих доработок Ваш двигатель будет работать только на метане. Возврат в дизельный режим возможен, только после проведения специальных работ.

    Подробнее о сути выполняемых работ смотрите в разделе «Как именно осуществляется перевод дизеля на метан»

    Какую экономию я смогу получить?

    Величина Вашей экономии высчитывается как разница между затратами на 100 км пробега на дизельное топливо до конвертации двигателя и затратами на затратами на приобретение газового топлива.

    Например, для грузового автомобиля Freigtleiner Cascadia средний расход дизельного топлива составлял 35 литров на 100 км, а после конвертации для работы на метнане расход газового топлива составил 42 нм3. метана. Тогда при стоимости дизельного топлива в 31 рубль 100 км. пробега изначально стоило 1085 рублей, а после конвертации при стоимости метана 11 рублей за нормальный кубический метр (нм3) 100 км пробега стало стоить 462 рубля.

    Экономия составила 623 рубль на 100 км пробега или 57%. С учетом годового пробега в 100.000 км, годовая экономия составили 623.000 рубль. Стоимость установки пропана на эту машину составила 600.000 рублей. Таким образом срок окупаемости системы составил — примерно 11 месяцев.

    Так же дополнительным преимуществом метана как газомоторного топлива является то, что его крайне трудно украсть и практически не возможно «слить», так как при нормальных условиях это газ. По тем же соображениям, его не возможно продать.

    Расход метана после переделки дизеля в газомоторный режим может колебаться в пределах от 1.05 до 1,25 нм3 метана на литр расхода дизельного топлива (зависит от конструкции дизеля, его изношенности и прочее).

    Примеры из нашего опыта по потреблению метана, конвертированными нами дизелями, Вы сможете прочитать .

    В среднем для предварительных расчетов дизельный двигатель при работе на метане будет потреблять газомоторное топлива из расчета 1 л потребления ДТ в дизельном режиме = 1,2 нм3 метана в газомоторном режиме.

    Конкретные значения экономии для Вашей машины Вы сможете получить заполнив заявку на конвертацию, нажав красную кнопку в конце этой страницы.

    Где можно заправиться метаном?

    В странах СНГ насчитывается свыше 500 АГНКС , причем на Россию приходится больше чем 240 АГНКС.

    Вы сможете посмотреть актуальную информацию по расположению и часам работы АГНКС на интерактивной карте, расположенной ниже. Карта любезно предоставлена сайтом gazmap.ru

    А если еще рядом с Вашим автохозяйством проходит газовая труба, то имеет смысл рассмотреть варианты строительства собственной АГНКС.

    Просто позвоните нам и мы с удовольствием Вас проконсультируем по всем вариантам.

    Какой пробег будет на одной заправке метаном?

    Метан на борту автомашины хранится в газообразном состоянии под высоким давлением в 200 атмосфер в специальных баллонах. Большой вес и размер этих баллонов является существенным негативным фактором ограничивающим использование метана как газомоторного топлива.

    ООО «РАГСК» используем в своей работе высококачественные металопластиковые композитные баллоны (Тип-2), сертифицированные для использования в РФ.

    Внутренняя часть этих баллонов выполнена из высокопрочной хроммо-молибденовой стали, а внешняя обмотана стеклопластиком и залита эпоксидной смолой.

    Для хранения 1 нм3 метана требуется 5 литров гидравлического объема баллона, т.е. например 100 литровый баллон позволяет хранить примерно 20 нм3 метана (на самом деле чуть больше, за счет того, что метан не является идеальным газом и лучше сжимается). Вес 1 литра гидравлического составляет примерно 0,85 кг, т.е. вес системы хранения 20 нм3 метана будет примерно 100 кг (85 кг это вес баллона и 15 кг вес собственно метана).

    Баллоны Типа-2 для хранения метана выглядят так:

    Система хранения метана в сборе выглядит так:

    На практике, обычно удается, достигнуть следующих значений пробега:

    • 200-250 км — для микроавтобусов. Вес системы хранения — 250 кг
    • 250-300 км — для городских автобусов среднего размера. Вес системы хранения — 450 кг
    • 500 км — для седельных тягачей. Вес системы хранения — 900 кг

    Конкретные значения пробега на метане для Вашей машины Вы сможете получить заполнив заявку на конвертацию, нажав красную кнопку в конце этой страницы.

    Как именно осуществляется перевод дизеля на метан?

    Перевод дизельного двигателя в газовый режим потребует серьезного вмешательства в сам двигатель.

    Сначала мы должны изменить степень сжатия (зачем? см. раздел » Как дизельный двигатель может работать на метане?») Мы используем различные методы для этого, подбирая лучший для Вашего двигателя:

    • Фрезеровка поршня
    • Прокладка под ГБЦ
    • Установка новых поршней
    • Укорочение шатуна

    В большей части случаев мы применяем фрезерование поршней (см. иллюстрацию выше).

    Примерно так будут выглядеть поршни после фрезерования:

    Так же мы устанавливаем ряд дополнительных датчиков и устройств (электронную педаль газа, датчик положения коленвала, датчик количества кислорода, датчик детонации и т.п.).

    Все компоненты системы управляются электронным блоком управления (ECU).

    Примерно так будет выглядеть комплект компонентов для установки на двигатель:

    Изменятся ли характеристики двигателя при работе на метане?

    Мощность Есть расхожее мнение, что на метане двигатель теряет в мощности до 25%. Это мнение справедливо для двухтопливных «бензин-газ» двигателей и отчасти справедливо для дизельных безнадувных двигателей.

    Для современных двигателей, оснащенных надувом это мнение ошибочно.

    Высокий прочностной ресурс исходного дизельного двигателя, предназначенный для работы с степенью сжатия 16-22 раза и высокое октановое число газового топлива позволяют нам использовать степень сжатия 12-14 раз. Такая высокая степень сжатия позволяет получать те же (и да же большие) удельные мощности , работая на стехеометрических топливных смесях.Однако выполнение при этом норм токсичности выше ЕВРО-3 не представляется возможным, так же вырастает тепловая напряженность конвертированного двигателя.

    Современные надувные дизели (особенно с промежуточным охлаждением надувного воздуха) позволяют работать на существенно обедненным смесях с сохранением мощности исходного дизельного двигателя, удержав тепловой режим в прежних пределах и уложившись в нормы токсичности ЕВРО-4 .

    Для безнадувных дизельных двигателей мы предлагаем 2 альтернативы: или снижение рабочей мощности на 10-15% или применение системы впрыска воды в впускной коллектор с целью поддержания приемлемой рабочей температуры и достижения норм токсичности выбросов ЕВРО-4

    Вид типичной зависимостей мощности от оборотов двигателя, по типам топлива:

    Момент Максимальная величина крутящего момента не изменится и даже может быть немного увеличена. Однако точка достижения максимального момента сместится в сторону более высоких оборотов. Это конечно не приятно, но на практике водители практически не жалуются и быстро привыкают, особенно если имеется запас по мощности двигателя.

    Радикальным решением проблемы смещения пика момента для газового двигателя является замена турбины на переразмеренную турбину специального типа с электромагнитным клапаном перепуска на высоких оборотах. Однако высокая стоимость такого решения не дает нам возможности применять его при индивидуальной конвертации.

    Надежность Ресурс двигателя существенно увеличится. Так как горение газа происходит более равномерно чем дизельного топлива, степень сжатия газового двигателя меньше чем у дизельного и газ не содержит в отличие от дизельного топлива посторонних примесей. Масло Газовые двигателя более требовательны к качеству масла. Мы рекомендуем применять качественные всесезонные масла классов SAE 15W-40, 10W-40 и менять масло не реже 10.000 км.

    Если есть возможность, желательно использовать специальные масла, типа ЛУКОЙЛ ЭФФОРСЕ 4004 или Shell Mysella LA SAE 40. Это не обязательно, но с ними двигатель прослужит очень долго.

    Вследствие большего содержания воды в продуктах сгорания газовоздушных смесей в газовых двигателях могут возникать проблемы водостойкости моторных масел, так же газовые двигатели более чувствительны к образованию зольных отложений в камере сгорания. Поэтому сульфатная зольность масел для газовых двигателей ограничивается более низкими значениями, а требования к гидрофобности масла повышаются.

    Шум Вы будете очень удивленны! Газовый двигатель — очень тихая машина по сравнению с дизельным. Уровень шума снизится на 10-15 Дб по приборам, что соответствует в 2-3 более тихой работе по субъективным ощущениям.

    Конечно, всем плевать на экологию. Но все таки… ?

    Метановый газовый двигатель существенно превосходит по всем экологическим характеристикам аналогичный по мощности двигатель, работающий на дизельном топливе и уступает по уровню выбросов только электрическим и водородным двигателям.

    Особенно это заметно по такому важному для крупных городов показателю как дымность. Всех горажан изрядно раздражают дымные хвосты за ЛИАЗами На метане этого не будет, так при горение газа сажеобразование отсутствует!

    Как правило экологический класс для метанового двигателя — это Евро-4 (без использования мочевины или системы рецеркуляции газов). Однако при установке дополнительного катализатора можно повысить экологический класс до уровня Евро-5.

    1

    1 Государственный научный центр Российской Федерации – Федеральное государственное унитарное предприятие «Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт (НАМИ)»

    При конвертации дизеля в газовый двигатель для компенсации уменьшения мощности применяют наддув. Для предотвращения детонации снижают геометрическую степень сжатия, что вызывает уменьшение индикаторного КПД. Анализируются различия между геометрической и фактической степенями сжатия. Закрытие впускного клапана на одинаковую величину до или после НМТ вызывает одинаковое уменьшение фактической степени сжатия по сравнению с геометрической степенью сжатия. Дано сравнение параметров процесса наполнения при стандартной и укороченной фазе впуска. Показано, что раннее закрытие впускного клапана позволяет уменьшить фактическую степень сжатия, снижая порог детонации, сохраняя при этом высокую геометрическую степень сжатия и высокий индикаторный КПД. Укороченный впуск обеспечивает рост механического КПД за счет снижения давления насосных потерь.

    газовый двигатель

    геометрическая степень сжатия

    фактическая степень сжатия

    фазы газораспределения

    индикаторный КПД

    механический КПД

    детонация

    насосные потери

    1. Каменев В.Ф. Перспективы улучшения токсических показателей дизельных двигателей автотранспортных средств массой более 3,5 т / В.Ф. Каменев, А.А. Демидов, П.А. Щеглов // Труды НАМИ: сб. науч. ст. – М., 2014. – Вып. № 256. – С. 5–24.

    2. Никитин А.А. Регулируемый привод клапана впуска рабочей среды в цилиндр двигателя: Пат. 2476691 Российская Федерация, МПК F01L1/34 / А.А. Никитин, Г.Е. Седых, Г.Г. Тер-Мкртичьян; заявитель и патентообладатель ГНЦ РФ ФГУП «НАМИ», опубл. 27.02.2013.

    3. Тер-Мкртичьян Г.Г. Двигатель с количественным бездроссельным регулированием мощности // Автомобильная промышленность. - 2014. - № 3. – С. 4-12.

    4. Тер-Мкртичьян Г.Г. Научные основы создания двигателей с управляемой степенью сжатия: дис. докт. … техн. наук. - М., 2004. – 323 с.

    5. Тер-Мкртичьян Г.Г. Управление движением поршней в двигателях внутреннего сгорания. – М. : Металлургиздат, 2011. – 304 с.

    6. Тер-Мкртичьян Г.Г. Тенденции развития аккумуляторных топливных систем крупных дизелей / Г.Г. Тер-Мкртичьян, Е.Е. Старков // Труды НАМИ: сб. науч. ст. – М., 2013. – Вып. № 255. – С. 22–47.

    В последнее время достаточно широкое применение в грузовых автомобилях и автобусах находят газовые двигатели, конвертируемые из дизелей путем доработки головки блока цилиндров с заменой форсунки на свечу зажигания и оснащения двигателя аппаратурой подачи газа во впускной трубопровод, или во впускные каналы . Для предотвращения детонации степень сжатия понижают, как правило, дорабатывая поршень.

    Газовый двигатель априори имеет меньшую мощность и худшую топливную экономичность по сравнению с базовым дизелем. Снижение мощности газового двигателя объясняется уменьшением наполнения цилиндров топливовоздушной смесью за счет замещения части воздуха газом, имеющим больший объем по сравнению с жидким топливом. Для компенсации снижения мощности применяют наддув, что требует дополнительного снижения степени сжатия. При этом уменьшается индикаторный КПД двигателя, сопровождающийся ухудшением топливной экономичности.

    В качестве базового двигателя для конвертации на газ был выбран дизель семейства ЯМЗ-536 (6ЧН10,5/12,8) с геометрической степенью сжатия ε =17,5 и номинальной мощностью 180 кВт при частоте вращения коленчатого вала 2300 мин -1 .

    Рис.1. Зависимость максимальной мощности газового двигателя от степени сжатия (граница детонации).

    На рисунке 1 приведена зависимость максимальной мощности газового двигателя от степени сжатия (граница детонации). В конвертированном двигателе при стандартных фазах газораспределения заданная номинальная мощность 180 кВт без детонации может быть обеспечена только при значительном снижении геометрической степени сжатия с 17,5 до 10, вызывающем ощутимое уменьшение индикаторного КПД.

    Избежать детонации без снижения или при минимальном снижении геометрической степени сжатия, а значит и минимальном уменьшении индикаторного КПД позволяет реализация цикла с ранним закрытием впускного клапана. В этом цикле впускной клапан закрывается до прихода поршня к НМТ. После закрытия впускного клапана при движении поршня к НМТ газовоздушная смесь сначала расширяется и охлаждается и только после прохождения поршнем НМТ и его движения к ВМТ начинает сжиматься. Потери наполнения цилиндров компенсируются за счет повышения давления наддува.

    Основными задачами исследований являлось выявление возможности конвертации современного дизеля в газовый двигатель с внешним смесеобразованием и количественным регулированием с сохранением высоких мощности и топливной экономичности базового дизеля. Рассмотрим некоторые ключевые моменты подходов к решению поставленных задач.

    Геометрическая и фактическая степени сжатия

    Начало процесса сжатия совпадает с моментом закрытия впускного клапана φ a . Если это происходит в НМТ, то фактическая степень сжатия ε ф равна геометрической степени сжатия ε. При традиционной организации рабочего процесса впускной клапан с целью улучшения наполнения за счет дозарядки закрывается через 20-40° после НМТ. При реализации цикла с укороченным впуском впускной клапан закрывается до НМТ. Поэтому в реальных двигателях фактическая степень сжатия всегда меньше геометрической степени сжатия.

    Закрытие впускного клапана на одинаковую величину либо до, либо после НМТ вызывает одинаковое уменьшение фактической степени сжатия по сравнению с геометрической степенью сжатия. Так, например, при изменении φ a на 30° до или после НМТ фактическая степень сжатия уменьшается приблизительно на 5% .

    Изменение параметров рабочего тела в процессе наполнения

    При проведении исследований были сохранены стандартные фазы выпуска, а фазы впуска менялись за счет вариации угла закрытия впускного клапана φ a . В этом случае при раннем закрытии впускного клапана (до НМТ) и сохранении стандартной продолжительности впуска (Δφ вп =230°) впускной клапан пришлось бы открывать задолго до ВМТ, что вследствие большого перекрытия клапанов неизбежно привело бы к чрезмерному росту коэффициента остаточных газов и нарушениям в протекании рабочего процесса. Поэтому раннее закрытие впускного клапана потребовало значительного уменьшения продолжительности впуска до 180°.

    На рисунке 2 приведена диаграмма давления заряда в процессе наполнения в зависимости от угла закрытия впускного клапана до НМТ. Давление в конце наполнения p a ниже давления во впускном трубопроводе, причем понижение давления тем больше, чем раньше до НМТ закрывается впускной клапан.

    При закрытии впускного клапана в ВМТ температура заряда в конце наполнения T a несколько выше температуры во впускном трубопроводе T k . При более раннем закрытии впускного клапана температуры сближаются, и при φ a >35...40° ПКВ заряд в ходе наполнения не нагревается, а охлаждается.

    1 - φ a =0°; 2 - φ a =30°; 3 - φ a =60°.

    Рис.2.Влияние угла закрытия впускного клапана на изменение давления в процессе наполнения.

    Оптимизация фазы впуска на режиме номинальной мощности

    При прочих равных условиях наддув или повышение степени сжатия в двигателях с внешним смесеобразованием ограничиваются одним и тем же явлением - возникновением детонации. Очевидно, что при одинаковом коэффициенте избытка воздуха и одинаковых углах опережения зажигания условия возникновения детонации соответствуют определенным значениям давления p c и температуры T c заряда в конце сжатия, зависящим от фактической степени сжатия .

    При одинаковой геометрической степени сжатия и, следовательно, одинаковом объеме сжатия отношение p c / T c однозначно определяет количество свежего заряда в цилиндре. Отношение давления рабочего тела к его температуре пропорционально плотности. Поэтому фактическая степень сжатия показывает, на сколько увеличивается плотность рабочего тела в процессе сжатия. На параметры рабочего тела в конце сжатия, кроме фактической степени сжатия, существенное влияние оказывают давление и температура заряда в конце наполнения, определяемые протеканием процессов газообмена, в первую очередь процесса наполнения.

    Рассмотрим варианты двигателя с одинаковой геометрической степенью сжатия и одинаковой величиной среднего индикаторного давления, один из которых имеет стандартную продолжительность впуска (Δφ вп =230°), а в другом впуск укорочен (Δφ вп =180°), параметры которых представлены в таблице 1. В первом варианте впускной клапан закрывается через 30° после ВМТ, а во втором варианте впускной клапан закрывается за 30° до ВМТ. Поэтому фактическая степень сжатия ε ф у двух вариантов с поздним и ранним закрытием впускного клапана одинакова.

    Таблица 1

    Параметры рабочего тела в конце наполнения для стандартного и укороченного впуска

    Δφ вп , °

    φ a , °

    P k , МПа

    P a , МПа

    ρ a , кг/м 3

    Среднее индикаторное давление при неизменной величине коэффициента избытка воздуха пропорционально произведению индикаторного КПД на количество заряда в конце наполнения. Индикаторный КПД при прочих равных условиях определяется геометрической степенью сжатия, которая в рассматриваемых вариантах одинакова. Поэтому индикаторный КПД также может быть принят одинаковым .

    Количество заряда в конце наполнения определяется произведением плотности заряда на впуске на коэффициент наполнения ρ k η v . Использование эффективных охладителей наддувочного воздуха позволяет поддерживать температуру заряда во впускном трубопроводе примерно постоянной независимо от степени повышения давления в компрессоре. Поэтому примем в первом приближении, что плотность заряда во впускном трубопроводе прямо пропорциональна давлению наддува.

    В варианте со стандартной продолжительностью впуска и закрытием впускного клапана после НМТ коэффициент наполнения на 50% выше, чем в варианте с укороченным впуском и закрытием впускного клапана до НМТ.

    При уменьшении коэффициента наполнения для поддержания среднего индикаторного давления на заданном уровне необходимо пропорционально, т.е. на те же 50%, увеличить давление наддува. При этом в варианте с ранним закрытием впускного клапана и давление, и температура заряда в конце наполнения будут на 12% ниже, чем соответствующие давление и температура в варианте с закрытием впускного клапана после НМТ. В связи с тем что в рассматриваемых вариантах фактическая степень сжатия одинакова, давление и температура конца сжатия в варианте с ранним закрытием впускного клапана также будут на 12% ниже, чем при закрытии впускного клапана после НМТ.

    Таким образом, в двигателе с укороченным впуском и закрытием впускного клапана до НМТ при сохранении неизменным среднего индикаторного давления можно ощутимо снизить вероятность возникновения детонации по сравнению с двигателем, имеющим стандартную продолжительность впуска и закрытие впускного клапана после НМТ.

    В таблице 2 дано сравнение параметров вариантов газового двигателя при работе на номинальном режиме.

    Таблица 2

    Параметры вариантов газового двигателя

    № варианта

    Степень сжатия ε

    Открытие впускного клапана φ s , ° ПКВ

    Закрытие впускного клапана φ a , ° ПКВ

    Степень повышения давления в компрессоре p k

    Давление насосных потерь p нп , МПа

    Давление механических потерь p м , МПа

    Коэффициент наполнения η v

    Индикаторный КПД η i

    Механический КПД η м

    Эффективный КПД η e

    Давление начала сжатия p a , МПа

    Температура начала сжатия T a , K

    На рисунке 3 представлены диаграммы газообмена при различных углах закрытия впускного клапана и одинаковой продолжительности наполнения, а на рисунке 4 даны диаграммы газообмена при одинаковой фактической степени сжатия и разной продолжительности наполнения.

    На режиме номинальной мощности угол закрытия впускного клапана φ a =30° до НМТ фактическая степень сжатия ε ф =14,2 и степень повышения давления в компрессоре π k =2,41. При этом обеспечивается минимальный уровень насосных потерь. При более раннем закрытии впускного клапана в связи со снижением коэффициента наполнения требуется существенно увеличить давление наддува на 43% (π k =3,44), что сопровождается значительным ростом давления насосных потерь.

    При раннем закрытии впускного клапана температура заряда в начале такта сжатия Т а, вследствие его предварительного расширения, на 42 К ниже по сравнению с двигателем со стандартными фазами впуска.

    Внутреннее охлаждение рабочего тела, сопровождающееся отбором части теплоты от наиболее горячих элементов камеры сгорания, снижает риск детонации и калильного зажигания. Коэффициент наполнения уменьшается на треть. Появляется возможность работать без детонации со степенью сжатия 15, против 10 при стандартной продолжительности впуска.

    1 - φ a =0°; 2 - φ a =30°; 3 - φ a =60°.

    Рис. 3. Диаграммы газообмена при различных углах закрытия впускного клапана.

    1 -φ a =30°до ВМТ; 2 -φ a =30° за ВМТ.

    Рис.4. Диаграммы газообмена при одинаковой фактической степени сжатия.

    Время-сечение впускных клапанов двигателя можно изменять, регулируя высоту их подъема. Одним из возможных технических решений является разработанный в ГНЦ НАМИ механизм управления высотой подъема впускного клапана . Большой перспективой обладают разработки гидроприводных устройств независимого электронного управления открытием и закрытием клапанов, основанные на принципах, промышленно реализованных в аккумуляторных топливных системах дизелей .

    Несмотря на повышение давления наддува и более высокую степень сжатия в двигателе с укороченным впуском ввиду раннего закрытия впускного клапана и, следовательно, более низкого давления начала сжатия, среднее давление в цилиндре не увеличивается. Поэтому также не увеличивается и давление трения. С другой стороны, при укороченном впуске ощутимо (на 21%) уменьшается давление насосных потерь, что приводит к росту механического КПД.

    Реализация более высокой степени сжатия в двигателе с укороченным впуском вызывает рост индикаторного КПД и в сочетании с некоторым увеличением механического КПД сопровождается повышением эффективного КПД на 8%.

    Заключение

    Результаты проведенных исследований свидетельствуют о том, что раннее закрытие впускного клапана позволяет в широких пределах манипулировать коэффициентом наполнения и фактической степенью сжатия, снижая порог детонации без уменьшения индикаторного КПД. Укороченный впуск обеспечивает рост механического КПД за счет снижения давления насосных потерь.

    Рецензенты:

    Каменев В.Ф., д.т.н., профессор, ведущий эксперт, ГНЦ РФ ФГУП «НАМИ», г. Москва.

    Сайкин А.М., д.т.н., начальник управления, ГНЦ РФ ФГУП «НАМИ», г. Москва.

    Библиографическая ссылка

    Тер-Мкртичьян Г.Г. КОНВЕРТАЦИЯ ДИЗЕЛЯ В ГАЗОВЫЙ ДВИГАТЕЛЬ С УМЕНЬШЕНИЕМ ФАКТИЧЕСКОЙ СТЕПЕНИ СЖАТИЯ // Современные проблемы науки и образования. – 2014. – № 5.;
    URL: http://science-education.ru/ru/article/view?id=14894 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

    Преимуществами газа для использования его в качестве толлива для автомобилей являются следующие показатели:

    Экономия топлива

    Экономия топлива газового двигателя – наиболее важный показатель двигателя – определяется октановым числом топлива и пределом воспламенения топливовоздушной смеси. Октановое число является показателем детонационной стойкости топлива, которая ограничивает возможность применения топлива в мощных и экономичных двигателях с высокой степенью сжатия. В современной технике октановое число является главным показателем сортности топлива: чем оно выше, тем качественнее и дороже топливо. СПБТ (смесь пропанобутановая техническая) имеет значение октанового числа от 100 до 110 единиц, поэтому ни на одном режиме работы двигателя не возникает детонация.

    Анализ теплофизических свойств топлива и его горючей смеси (теплота сгорания и теплотворность горючей смеси) показывает, что все газы превосходят бензин по теплотворной способности, однако в смеси с воздухом их энергетические показатели снижаются, что является одной из причин уменьшения мощности двигателя. Уменьшение мощности при работе на сжиженном составляет до 7%. Аналогичный двигатель при работе на сжатом (компримированном) метане теряет до 20% мощности.

    Вместе с тем высокие октановые числа позволяют повысить степень сжатия газовых двигателей и поднять показатель мощности, но дешево выполнить эту работу по силам только автозаводам. В условиях монтажного участка произвести данную доработку слишком дорого, а зачастую просто невозможно.

    Высокие октановые числа требуют увеличения угла опережения зажигания на 5°…7°. Однако, раннее зажигание может привести к перегреву деталей двигателя. В практике эксплуатации газовых двигателей наблюдались случаи прогара днищ поршня и клапанов при слишком раннем зажигании и работе на сильно обедненных смесях.

    Удельные расходы топлива двигателем тем меньше, чем беднее топливовоздушная смесь, на которой работает двигатель, то есть чем меньше топлива приходится на 1 кг воздуха, поступающего в двигатель. Однако очень бедные смеси, где топлива слишком мало просто не воспламеняются от искры. Это и ставит предел повышению топливной экономичности. В смесях бензина с воздухом предельное содержание топлива в 1 кг воздуха, при котором воспламенение возможно, составляет 54 г. В предельно бедной газо-воздушной смеси это содержание составляет только 40 г. Поэтому на режимах, когда не требуется развивать максимальную мощность двигатель, работающий на природном газе значительно экономичнее, чем бензиновый. Опыты показали, что расход топлива на 100 км при движении автомобиля, работающего на газе, со скоростями в пределах от 25 до 50 км/час в 2 раза меньше чем у того же автомобиля в тех же условиях, работающего на бензине. Компоненты газового топлива имеют пределы воспламенения, значительно смещенные в сторону обедненных смесей, что дает дополнительные возможности повышения экономии топлива.

    Экологическая безопасность газовых двигателей

    Газообразные углеводородные топлива относятся к наиболее чистым в экологическом отношении моторным топливам. Выбросы токсичных веществ с отработанными газами, по сравнению с выбросами при работе на бензине в 3-5 раз меньше.
    Бензиновые двигатели в силу высокого значения предела обеднения (54 г топлива на 1 кг воздуха) вынужденно регулируются на богатые смеси, что приводит к недостатку кислорода в смеси и неполному сгоранию топлива. В результате в выхлопе такого двигателя может содержаться значительное количество угарного газа (СО), который всегда образуется при недостатке кислорода. В случае же, когда кислорода достаточно, в двигателе при сгорании развивается высокая температура (более 1800 градусов), при которой происходит окисление азота воздуха избыточным кислородом с образованием окислов азота, токсичность которых в 41 раз превосходит токсичность СО.

    Кроме этих компонентов, в выхлопе бензиновых двигателей содержаться углеводороды и продукты их неполного окисления, которые образуются в пристеночном слое камеры сгорания, где охлаждаемые водой стенки не позволяют жидкому топливу испариться за короткое время рабочего цикла двигателя и ограничивают доступ кислорода к топливу. В случае применения газового топлива все указанные факторы действуют значительно слабее, в основном вследствие более бедных смесей. Продукты неполного сгорания практически не образуются, так как всегда есть избыток кислорода. Окислы азота образуются в меньшем количестве, так как при обедненных смесях температура сгорания значительно ниже. Пристеночный слой камеры сгорания содержит меньше топлива при бедных газо-воздушных смесях, чем при более богатых бензино-воздушных. Таким образом, при правильно отрегулированном газовом двигателе выбросы в атмосферу угарного газа оказываются в 5-10 раз меньше, чем у бензинового, окислов азота в 1,5 – 2,0 раза меньше и углеводородов в 2 –3 раза меньше. Это позволяет соблюдать перспективные нормы токсичности автомобилей («Евро-2» и возможно и «Евро-3») при надлежащей отработке двигателей.

    Использование газа в качестве моторного топлива является одним из немногих экологических мероприятий, затраты на которое окупаются прямым экономическим эффектом в виде сокращения расходов на горюче-смазочные материалы. Подавляющее большинство других экологических мероприятий являются исключительно затратными.

    В условиях города с миллионным количеством двигателей использование газа в качестве топлива позволяет значительно снизить загрязнение окружающей среды. Во многих странах на решение этой проблемы направлены отдельные экологические программы, стимулирующие перевод двигателей с бензина на газ. Московские экологические программы с каждым годом ужесточают требования к владельцам транспортных средств в отношении выброса выхлопных газов. Переход на использование газа - это решение экологической проблемы в сочетании с экономическим эффектом.

    Износостойкость и безопасность газового двигателя

    Износостойкость двигателя вплотную связана с взаимодействием топлива и моторного масла. Одним из неприятных явлений в бензиновых двигателях является смывание бензином масляной пленки с внутренней поверхности цилиндров двигателя при холодном запуске, когда топливо поступает в цилиндры не испарившись. Далее бензин в жидком виде попадает в масло, растворяется в нем и разжижает его, ухудшая смазочные свойства. Оба эффекта ускоряют износ двигателя. ГСН независимо от температуры двигателя всегда остается в газовой фазе, что полностью исключает отмеченные факторы. ГСН (газ сжиженный нефтяной) не может проникнуть в цилиндр, как это происходит при использовании обычных жидких видов топлива, поэтому не возникает необходимости промывания двигателя. Головка блока и блок цилиндров меньше изнашиваются, что увеличивает срок службы двигателя.

    При несоблюдении правил эксплуатации и обслуживания, любое техническое изделие представляет определенную опасность. Газобаллонные установки - не исключение. В то же время при определении потенциальных рисков следует учитывать такие объективные физико-химические свойства газов, как температура и концентрационные пределы самовоспламенения. Для взрыва или воспламенения необходимо образование топливовоздушной смеси, то есть объемное смешение газа с воздухом. Нахождение газа в баллоне под давлением исключает возможность проникновения туда воздуха, в то время как в баках с бензином или дизельным топливом всегда присутствует смесь их паров с воздухом.

    Как правило, устанавливаются в наименее уязвимых и статистически реже повреждаемых местах автомобиля. На основе фактических данных была рассчитана вероятность поражения и конструктивного разрушения корпуса автомобиля. Результаты расчетов, свидетельствуют, вероятность разрушения корпуса автомобиля в зоне расположения баллонов составляет 1-5%.
    Опыт эксплуатации газовых двигателей, как у нас, так из рубежом показывает, что двигатели, работающие на газе, менее пожаро-и взрывоопасны в аварийных ситуациях.

    Экономическая целесообразность применения

    Эксплуатация автомобиля на ГСН приносит около 40% экономии. Поскольку по своим характеристикам к бензину наиболее близка именно смесь пропана и бутана, то для его использования капитальных переделок в устройстве двигателя не требуется. Универсальная система питания двигателя сохраняет полноценную бензиновую топливную систему и дает возможность легко переключаться с бензина на газ и обратно. Двигатель, оборудованный универсальной системой, может работать либо на бензине, либо на газовом топливе. Стоимость переоборудования бензинового автомобиля на пропан-бутановую смесь в зависимости от выбранного оборудования колеблется от 4-х до 12 тысяч рублей.

    При выработке газа двигатель останавливается не сразу, а прекращает работу через 2-4 км пробега. Комбинированная система питания "газ плюс бензин" - это 1000 км пути на одной заправке обеих топливных систем. Тем не менее, определенные отличия в характеристиках этих видов топлива все же существуют. Так, при использовании сжиженного газа для появления искры требуется более высокое напряжение в свече зажигания. Оно может превышать величину напряжения при работе машины на бензине на 10-15%.

    Перевод двигателя на газовое топливо увеличивает ресурс его работы в 1,5-2 раза. Улучшается работа системы зажигания, срок службы свечей возрастает на 40%, происходит более полное сгорание газо-воздушной смеси, чем при работе на бензине. Уменьшается нагарообразование в камере сгорания, головке блока цилиндров и на поршнях, поскольку сокращается количество углеродистых осадков.

    Другим аспектом экономической целесообразности использования СПБТ в качестве моторного топлива является то, что использование газа позволяет свести к минимуму возможность несанкционированного слива топлива.

    Автомобили с системой впрыска топлива, оборудованные газовой аппаратурой, проще защищать от угона, чем автомобили с бензиновыми двигателями: отсоединив и забрав с собой легкосъемный коммутатор, можно надежно заблокировать подачу топлива и тем самым воспрепятствовать угону. Такой “блокиратор” трудно распознать, что служит серьезным противоугонным устройством для несанкционированного пуска двигателя.

    Таким образом, в целом использование газа в качестве моторного топлива экономически эффективно, экологично и достаточно безопасно.