Войти
Автомобильный портал - Двигатель. Замена свечей. Подсветка. Права и вождение
  • Совместимость тельца и рыбы в семейной жизни
  • Совместимость в любовных отношениях: Дева и Овен
  • Как понять плутон в вашей натальной карте
  • Совместимость козерог и весы
  • Водолей и Близнецы: совместимость в любовных отношениях, сексе, браке и дружбе
  • Совместимость: женщина-Водолей и мужчина-Лев
  • Тепловой насос: принцип работы - особенности и виды. Тепловой насос для отопления дома: принцип работы, обзор моделей, их плюсы и минусы Что такое тепловой насос принцип действия

    Тепловой насос: принцип работы - особенности и виды. Тепловой насос для отопления дома: принцип работы, обзор моделей, их плюсы и минусы Что такое тепловой насос принцип действия

    Тепловой насос – универсальный прибор, функционально объединивший в себе характеристики кондиционера, водонагревателя и котла отопления. Этот прибор не использует обычное топливо, для его работы необходимы возобновляемые источники из окружающей среды – энергия воздуха, грунта, воды.

    Поэтому тепловой насос сегодня – наиболее экономически выгодный агрегат, поскольку его работа не зависит от стоимости топлива, также экологичный, поскольку источником тепла выступает не электричество или продукты сгорания, а природные источники тепла.

    Для лучшего понимания, как работает тепловой насос для отопления дома, стоит вспомнить принцип работы холодильника. Здесь испаряется рабочее вещество, отдавая холод. А в насосе наоборот, оно конденсируется и продуцирует тепло.

    Принцип работы теплового насоса

    Весь процесс работы системы представлен в виде цикла Карно – названного по имени изобретателя. Описать его можно следующим образом. Теплоноситель проходит через рабочий контур – воздушный, земляной, водный, их сочетания, откуда направляется в 1-й теплообменник – испарительную камеру. Здесь он передает накопленное тепло хладагенту, циркулирующему во внутреннем контуре насоса.

    Принцип работы теплового насоса отопления дома

    Жидкий хладагент поступает в испарительную камеру, где низкие значения давления и температуры (5 0 С) переводят его в газообразное состояние. Следующий этап – переход газа в компрессор и его сжатие. В результате чего температура газа резко возрастает, газ переходит в конденсатор, здесь он обменивается теплом с системой отопления. Охлажденный газ переходит в жидкость, и цикл повторяется.

    Достоинства и негативные стороны тепловых насосов

    Работой тепловых насосов для отопления дома можно управлять посредством специально установленных терморегуляторов. Насос автоматически включается при падении температуры среды ниже заданного значения и отключается, если температура превышает заданную отметку. Тем самым прибор поддерживает постоянную температуру в помещении – это одно из преимуществ устройств.

    Достоинствами прибора являются его экономичность – насос потребляет небольшое количество электроэнергии и экологичность, или абсолютная безопасность для окружающей среды. Основные преимущества устройства:

    • Надежность. Срок службы превышает 15 лет, все части системы обладают высоким рабочим ресурсом, перепады энергии не наносят системе вреда.
    • Безопасность. Отсутствуют сажа, выхлоп, открытое пламя, утечка газа исключена.
    • Комфорт. Работа насоса бесшумная, уют и комфорт в доме помогают создать климатконтроль и автоматическая система, работа которой зависит от погодных условий.
    • Гибкость. Прибор отличается современным стильным дизайном, его можно совместить с каждой системой отопления дома.
    • Универсальность. Применяется в частном, гражданском строительстве. Поскольку обладает широким диапазоном мощностей. За счет чего может обеспечить теплом помещения любой площади – от небольшого дома до коттеджа.

    Сложная структура насоса определяет его главный недостаток – высокую стоимость оборудования и его монтажа. Для установки прибора необходимо проводить земляные работы в больших объемах.

    Тепловые насосы – классификация

    Работа теплового насоса для отопления дома возможна в широком температурном диапазоне – от -30 до +35 градусов по Цельсию. Наиболее распространены приборы абсорбционные (переносят тепло посредством его источника) и компрессионные (циркуляция рабочей жидкости происходит за счет электроэнергии). Наиболее экономичны абсорбционные устройства, однако они более дорогостоящие и обладают сложной конструкцией.

    Классификация насосов по типу источников тепла:

    1. Геотермальные. Забирают тепло воды или земли.
    2. Воздушные. Забирают тепло атмосферного воздуха.
    3. Вторичного тепла. Забирают так называемое производственное тепло – образующееся на производстве, при отоплении, прочих промышленных процессах.

    Теплоносителем может выступать:

    • Вода из искусственного или естественного водоема, грунтовые воды.
    • Грунт.
    • Воздушные массы.
    • Комбинации вышеперечисленных носителей.

    Насос геотермального типа – принципы устройства и работы

    Насос геотермальный для отопления дома использует тепло грунта, которое он отбирает вертикальными зондами или горизонтальным коллектором. Зонды размещаются на глубине до 70 метров, зонд находится на небольшом удалении от поверхности. Такой тип устройства наиболее эффективен, поскольку у источника тепла довольно высокая постоянная в течение всего года температура. Поэтому необходимо затратить меньше энергии на транспортировку тепла.

    Такое оборудование требует больших затрат на установку. Высокой стоимостью отличаются работы по бурению скважин. Кроме того, площадь, отведенная под коллектор, должна быть в несколько раз больше площади отапливаемого дома либо коттеджа. Важно помнить : земля, где находится коллектор, не может использоваться для посадки овощей или плодовых деревьев – корни растений будут переохлаждены.

    Использование воды в качестве источника тепла

    Водоем – источник большого количества тепла. Для насоса можно использовать незамерзающие водоемы от 3 метров глубиной либо грунтовые воды при их высоком уровне. Реализовать систему можно следующим образом: трубу теплообменника, отягощенную грузом из расчета 5 кг на 1 метр погонный, укладывают на дно водоема. Протяженность трубы зависит от метража дома. Для помещения в 100 м.кв. оптимальная протяженность трубы – 300 метров.

    В случае использования грунтовых вод необходимо пробурить две скважины, расположенные одна за другой по направлению грунтовых вод. В первую скважину помещают насос, подающий воду на теплообменник. Во вторую скважину поступает уже охлажденная вода. Это так называемая открытая схема сбора тепла. Ее основной недостаток в том, что уровень грунтовых вод нестабилен и может значительно меняться.

    Воздух – наиболее доступный источник тепла

    В случае использования воздуха в качестве источника тепла теплообменником выступает радиатор, принудительно обдуваемый вентилятором. Если работает тепловой насос для отопления дома по системе «воздух-вода», пользователь получает преимущества:

    • Возможность обогреть весь дом. Вода, выступающая в качестве теплоносителя, разводится по приборам отопления.
    • При минимальных затратах электроэнергии – возможность обеспечить жильцов горячим водоснабжением. Это возможно за счет наличия дополнительного теплоизолированного теплообменника с емкостью накопительной.
    • Насосы аналогичного типа могут использоваться для нагрева воды в бассейнах.

    Если насос работает по системе «воздух-воздух», теплоноситель для нагрева помещения не используется. Обогрев производится за счет полученной тепловой энергии. Примером реализации такой схемы может служить обычный кондиционер, установленный на режим обогрева. Сегодня все устройства, использующие воздух как источник тепла, – инверторные. В них переменный ток в постоянный преобразуется, обеспечивая гибкое управление компрессором и его работу без остановок. А это увеличивает ресурс устройства.

    Тепловой насос – альтернативная система отопления дома

    Тепловые насосы – альтернатива современным системам отопления. Они экономичны, экологичны и безопасны в использовании. Однако высокая стоимость монтажных работ и оборудования на сегодня не позволяют использовать приборы повсеместно. Теперь вы знаете как работает тепловой насос для отопления дома и подсчитав все плюсы и минусы сможете принять решение о его установки.

    Первые варианты теплонасосов могли лишь частично удовлетворить потребности в тепловой энергии. Современные разновидности более эффективны и могут применяться для систем отопления. Именно поэтому смонтировать тепловой насос своими руками пытаются многие домовладельцы.

    Мы расскажем, как выбрать оптимальный вариант теплового насоса с учетом гео-данных участка, на котором его планируется установить. В предложенной к рассмотрению статье подробно описан принцип действия систем использования “зеленой энергии”, перечислены отличия. С учетом наших советов вы, без сомнения, остановитесь на эффективном типе.

    Для самостоятельных мастеров мы приводим технологию сборки теплового насоса. Представленную к рассмотрению информацию дополняют наглядные схемы, подборки фото и развернутый видео-инструктаж в двух частях.

    Под термином тепловой насос понимается набор определенного оборудования. Основной функцией этого оборудования является сбор тепловой энергии и ее транспортировка к потребителю. Источником такой энергии может стать любое тело или среда, обладающая температурой от +1º и более градусов.

    В окружающей нас среде источников низкотемпературного тепла более чем достаточно. Это промышленные отходы предприятий, тепловых и атомных электростанций, канализационные стоки и пр. Для работы тепловых насосов в сфере отопления дома нужны три самостоятельно восстанавливающихся природных источника – воздух, вода, земля.

    Тепловые насосы “черпают” энергию из процессов, регулярно происходящих в окружающей среде. Течение процессов никогда не прекращается, потому источники признаны неисчерпаемыми по человеческим критериям

    Три перечисленных потенциальных поставщика энергии напрямую связаны с энергией солнца, которое путем нагревания приводит в движение воздух с ветром и сообщает тепловую энергию земле. Именно выбор источника является основными критерием, согласно которому классифицируют тепловые насосные системы.

    Принцип действия тепловых насосов базируется на способности тел или сред передавать тепловую энергию другому телу или среде. Получатели и поставщики энергии в тепловых насосных системах работают обычно в паре.

    Так различают следующие виды тепловых насосов:

    • Воздух – вода.
    • Земля – вода.
    • Вода – воздух.
    • Вода – вода.
    • Земля – воздух.
    • Вода – вода
    • Воздух – воздух.

    При этом первое слово определяет тип среды, у которой система отбирает низкотемпературное тепло. Второе указывает на вид носителя, которому и передается эта тепловая энергия. Так, в тепловых насосах вода – вода, тепло отбирается у водной среды и в качестве теплоносителя используется жидкость.

    Тепловой насос - хорошая альтернатива традиционному отоплению частного дома. Прибор, используемый в течение 30 лет в странах Запада, в России еще является новинкой. Препятствием для его широкого использования являются два фактора: высокая стоимость и недостаток сведений о тепловых насосах, их преимуществах и принципах работы. Показателем практичности геотермальной системы отопления служит ее популярность на Западе. Так, тепловыми насосами в Швеции и Норвегии отапливаются около 95% домов. Предлагаем вам подробнее ознакомиться с устройством и принципами работы этого теплового оборудования, за которым, непременно, будущее.

    Что такое тепловой насос?

    Тепловой насос - прибор, поглощающий из окружающей среды (вода, земля, воздух) низко потенциальную тепловую энергию и передающий ее в системы теплоснабжения с более высокой температурой.

    Природа вокруг нас пропитана энергией. Даже мороз обладает теплом. Энергию невозможно извлечь из окружающей среды только при температуре -273 °С. Поэтому даже в самую лютую зиму загородный дом может отапливаться за счет энергии, полученной от природы.

    В зависимости от источника энергии (вода, земля, воздух), происходит модификация тепловых насосов. Однако наиболее практичным и испытанным является геотермальный тепловой насос, применяющий энергию грунта. Он идеально подходит для российских условий.

    Геотермальное отопление работает по одному из трех направлений:

    Использование геотермального отопления, как и любой системы теплоснабжения, позволит не только обогреть дом, но и обеспечить горячей водой, обогреть автостоянку или теплицу, нагреть воду в бассейне

    Преимущества использования теплового насоса

    Принцип работы теплового насоса

    Работу теплового насоса можно сравнить с работой обычного холодильника. Только вместо холода аппарат вырабатывает тепло. Веществом, передающим энергию, является фреон - газ или жидкость с низкой температурой кипения. При испарении он поглощает тепло, а при конденсации - отдает его.

    Тепловой насос - главный элемент системы. Его размеры не превышают габаритов средней стиральной машины , что облегчает установку прибора. Сам насос включается в два контура: внутренний и внешний.

    Внутренний контур состоит из системы теплоснабжения дома (трубы и радиаторы).Внешний контур находится в воде или под землей. Он включает в себя коллектор-теплообменник и трубы, связывающие коллектор с насосом.

    Тепловые насосы комплектуются различными дополнительными устройствами. Это могут быть:

    • коммуникационное устройство для управления системой через персональный компьютер или мобильный телефон;
    • блок охлаждения для локальной или центральной системы охлаждения;
    • дополнительный насосный блок может потребоваться для отопления полов;
    • циркуляционный насос необходим для циркуляции горячей воды;

    Процесс работы насоса состоит из нескольких этапов:

    1. Незамерзающая смесь подается в коллектор. Происходит поглощение тепловой энергии и транспортировка ее к насосу.
    2. В испарителе энергия передается фреону, где он нагревается до 8 °C , закипает и превращению в пар.
    3. При увеличении давления в компрессоре повышается температура. Она может достигать 70 °C.
    4. Внутридомовая система отопления получает тепловую энергию через конденсатор . Фреон мгновенно охлаждается и переходит в жидкое состояние, отдавая при этом оставшееся тепло. Затем он идет обратно в коллектор. Так завершается цикл.
    5. Далее работа повторяется по тому же принципу.

    Наиболее эффективно тепловой насос функционирует при наличии в доме теплых полов . Тепло распределяется по всей площади пола равномерно. При этом отсутствуют зоны перегрева. Теплоноситель в системе редко нагревается больше 35 °C, а отопление путем нагрева полов считается наиболее комфортным при 33 °C. Это меньше на 2 °C чем при отоплении радиаторами. Отсюда возникает экономия до 18% в год от всего отопительного бюджета. Кроме того, считается, что отопление на уровне пола наиболее комфортно для проживания человека.

    Система отопления может быть моновалентной и бивалентной. У моновалентных систем один источник отопления. Он полностью отвечает круглогодичной потребности в тепле. У бивалентных, соответственно, - два источника.

    Отопление дома в зимний период

    На территории с более суровыми климатическими условиями актуально использование бивалентной системы отопления . За счет второго источника тепла расширяется диапазон температур. Работы одного теплового насоса достаточно только до уровня температуры -20 °С. При большем ее понижении подключаются электрообогреватель , камин, жидкотопливный или газовый котел. При этом мощность теплового насоса ограничивается от максимальной зимней потребности до 70 - 80%. Недостающие 20 - 30% дает дополнительный источник тепла. Это снижает общую эффективность работы системы. Однако снижение является незначительным.

    При полном переходе на отопление здания геотермальной системой (в случае, когда не планируется устанавливать дополнительно котел или электроприбор) тепловой насос применяется совместно с внутренним модулем, содержащим небольшой встроенный электронагреватель. Он поддержит прибор, когда температура окружающей среды будет ниже -20 °С.

    В каких случаях использование теплового насоса является обоснованным?

    Вопрос отопления загородного дома предполагает рассмотрение нескольких вариантов:

    • Газ . При отсутствии рядом с домом газопровода это становится невозможным. В ряде регионов купить газ можно только в баллонах.
    • Уголь или дрова . С ними отопление превращается в трудоемкий и малоэффективный процесс.
    • Жидкотопливный котел требует больших расходов на топливо и специального помещения. Особое хранение необходимо и самому топливу, что неудобно в небольшом доме.
    • Отопление электричеством обходится очень дорого.

    В таком случае на помощь приходит геотермальная система отопления . Ее используют даже там, где доступен газ. Установка теплового насоса дороже установки оборудования для отопления газом. Однако, газ в дальнейшем придется оплачивать постоянно, в отличие от энергии, взятой из окружающей среды.

    Окупаемость теплового насоса сложно выразить в усредненном числовом значении. Все зависит от его начальной стоимости. Суть установки такого отопления сводится к перспективе. Хотя количество потребляемой электроэнергии - в 3−5 раз меньше , чем у других систем отопления, все же необходимо подсчитать в денежном эквиваленте все энергозатраты за год и сравнить их со стоимостью системы, ее монтажа и эксплуатации.

    Достигнуть максимальной эффективности применения теплового насоса можно при соблюдении двух важных условий:

    • Отапливаемое здание должно быть утепленным , а показатель теплопотерь не должен превышать 100 Вт/м2. Существует прямая связь между тем, как утеплен дом и тем, насколько выгодно будет установка теплонасоса.
    • Подключение теплового насоса к низкотемпературным источникам обогрева (конвекторам , теплым полам), температурный режим которых колеблется между 30 - 40 °C.

    Итак, тепловой насос станет неплохой альтернативой традиционным способам отопления. Прибор гарантирует экономичность и полную безопасность . Владельцу, после установки геотермальной системы отопления, не придется зависеть от различных внешних факторов, как, например, перебои с газоснабжением или вызовом сервисной службы. Энергия, взятая из окружающей среды, не требует оплаты и не исчерпывается.

    В соответствии с прогнозами Мирового комитета по энергетике в 2020 г. геотермальные насосы составят три четверти всего отопительного оборудования.

    Практика применения тепловых насосов: видео

    Любой хозяин частного дома стремится минимизировать расходы на обогрев жилища. В этом плане тепловые насосы существенно выгоднее других вариантов отопления, они дают 2.5-4.5 кВт теплоты с одного потребленного киловатта электричества. Обратная сторона медали: для получения дешевой энергии придется вложить немалые средства в оборудование, самая скромная отопительная установка мощностью 10 кВт обойдется в 3500 у. е. (стартовая цена).

    Единственный способ уменьшить затраты в 2-3 раза - сделать тепловой насос своими руками (сокращенно - ТН). Рассмотрим несколько реальных рабочих вариантов, собранных и проверенных мастерами–энтузиастами на практике. Поскольку для изготовления сложного агрегата требуются базовые знания о холодильных машинах, начнем с теории.

    Особенности и принцип работы ТН

    Чем тепловой насос отличается от других установок для отопления частных домов:

    • в отличие от котлов и обогревателей, агрегат самостоятельно не производит тепло, а подобно кондиционеру перемещает его внутрь здания;
    • ТН получил название насоса, поскольку «выкачивает» энергию из источников низкопотенциального тепла – окружающего воздуха, воды либо грунта;
    • установка питается исключительно электроэнергией, потребляемой компрессором, вентиляторами, циркуляционными насосами и платой управления;
    • работа аппарата основана на цикле Карно, используемом во всех холодильных машинах, например, кондиционерах и сплит-системах.
    В режиме обогрева традиционная сплит-система нормально работает при температуре выше минус 5 градусов, на сильном морозе эффективность резко падает

    Справка. Теплота содержится в любых веществах, чья температура выше абсолютного нуля (минус 273 градуса). Современные технологии позволяют отнимать указанную энергию у воздуха с температурой до -30 °С, земли и воды – до +2 °С.

    В теплообменном цикле Карно участвует рабочее тело – газ фреон, кипящий при минусовой температуре. Поочередно испаряясь и конденсируясь в двух теплообменниках, хладагент поглощает энергию окружающей среды и переносит внутрь здания. В целом принцип действия теплового насоса повторяет , включенного на обогрев:

    1. Находясь в жидкой фазе, фреон двигается по трубкам наружного теплообменника-испарителя, как изображено на схеме. Получая тепло воздуха или воды сквозь металлические стенки, хладагент нагревается, кипит и испаряется.
    2. Дальше газ поступает в компрессор, нагнетающий давление до расчетного значения. Его задача – поднять точку кипения вещества, чтобы фреон сконденсировался при более высокой температуре.
    3. Проходя через внутренний теплообменник–конденсор, газ снова обращается в жидкость и отдает накопленную энергию теплоносителю (воде) или воздуху помещения напрямую.
    4. На последнем этапе жидкий хладон поступает внутрь ресивера–влагоотделителя, затем в дросселирующее устройство. Давление вещества снова падает, фреон готов пройти повторный цикл.

    Схема работы теплового насоса похожа на принцип действия сплит-системы

    Примечание. Обычные сплит-системы и заводские теплонасосы имеют общую черту – способность переносить энергию в обоих направлениях и функционировать в 2 режимах – отопление/охлаждение. Переключение реализовано с помощью четырехходового реверсивного клапана, меняющего направление течения газа по контуру.

    В бытовых кондиционерах и ТН применяются различные типы терморегулирующей арматуры, снижающей давление хладагента перед испарителем. В бытовых сплит-системах роль регулятора играет простое капиллярное устройство, в насосах ставится дорогой терморегулирующий вентиль (ТРВ).

    Заметьте, вышеописанный цикл происходит в тепловых насосах всех типов. Разница состоит в способах подвода/отбора тепла, которые мы перечислим далее.


    Виды дроссельной арматуры: капиллярная трубка (фото слева) и терморегулирующий вентиль (ТРВ)

    Разновидности установок

    Согласно общепринятой классификации, ТН делятся на типы по источнику получаемой энергии и виду теплоносителя, которому она передается:


    Справка. Разновидности тепловых насосов перечислены в порядке увеличения стоимости оборудования вместе с монтажом. Воздушные установки – самые дешевые, геотермальные – дорогие.

    Основной параметр, характеризующий тепловой насос для отопления дома, – коэффициент эффективности COP, равный отношению между полученной и затраченной энергией. Например, относительно недорогие воздушные отопители не могут похвастать высоким COP – 2.5…3.5. Поясняем: затратив 1 кВт электричества, установка подает в жилище 2.5-3.5 кВт теплоты.


    Способы отбора тепла водных источников: из пруда (слева) и через скважины (справа)

    Водяные и грунтовые системы эффективнее, их реальный коэффициент лежит в диапазоне 3…4.5. Производительность – величина переменная, зависящая от многих факторов: конструкции теплообменного контура, глубины погружения, температуры и протока воды.

    Важный момент. Водогрейные тепловые насосы не способны разогреть теплоноситель до 60-90 °С без дополнительных контуров. Нормальная температура воды от ТН составляет 35…40 градусов, котлы здесь явно выигрывают. Отсюда рекомендация производителей: подключайте оборудование к низкотемпературному отоплению – водяным .

    Какой ТН лучше собирать

    Формулируем задачу: нужно построить самодельный тепловой насос с наименьшими затратами. Отсюда вытекает ряд логичных выводов:

    1. В установке придется использовать минимум дорогостоящих деталей, поэтому достичь высокого значения COP не удастся. По коэффициенту производительности наш аппарат проиграет заводским моделям.
    2. Соответственно, делать чисто воздушный ТН бессмысленно, проще пользоваться в режиме обогрева.
    3. Чтобы получить реальную выгоду, нужно изготавливать тепловой насос «воздух – вода», «вода-вода» либо строить геотермальную установку. В первом случае можно добиться COP около 2-2.2, в остальных – достичь показателя 3-3.5.
    4. Без контуров напольного отопления обойтись не удастся. Теплоноситель, нагретый до 30-35 градусов, несовместим с радиаторной сетью, разве только в южных регионах.

    Прокладка внешнего контура ТН к водоему

    Замечание. Производители утверждают: инверторная сплит-система функционирует при уличной температуре минус 15-30 °С. В действительности эффективность обогрева существенно снижается. По отзывам домовладельцев, в морозные дни внутренний блок подает еле теплый поток воздуха.

    Для реализации водяной версии ТН необходимы определенные условия (на выбор):

    • водоем за 25-50 м от жилища, на большем расстоянии потребление электричества сильно вырастет за счет мощного циркуляционного насоса;
    • колодец либо скважина с достаточным запасом (дебетом) воды и место для слива (шурф, вторая скважина, сточная канава, канализация);
    • сборный канализационный коллектор (если вам позволят туда врезаться).

    Расход грунтовых вод рассчитать нетрудно. В процессе отбора теплоты самодельный ТН понизит их температуру на 4-5 °С, отсюда через теплоемкость воды определяется объем протока. Для получения 1 кВт тепла (дельту температур воды принимаем 5 градусов) нужно прогнать через ТН около 170 литров в течение часа.

    На отопление дома площадью 100 м² потребуется мощность 10 кВт и расход воды 1.7 тонны в час - объем впечатляющий. Подобный тепловой водяной насос сгодится для небольшого дачного домика 30-40 м², желательно – утепленного.


    Способы отбора теплоты геотермальным ТН

    Сборка геотермальной системы более реальна, хотя процесс довольно трудоемкий. Вариант горизонтальной раскладки трубы по площади на глубине 1.5 м отметаем сразу – вам придется перелопатить весь участок либо платить деньги за услуги землеройной техники. Способ пробивки скважин реализовать гораздо проще и дешевле, практически без нарушения ландшафта.

    Простейший тепловой насос из оконного кондиционера

    Как нетрудно догадаться, для изготовления ТН «вода – воздух» потребуется оконный охладитель в рабочем состоянии. Очень желательно купить модель, оборудованную реверсивным клапаном и способную работать на обогрев, иначе придется переделывать фреоновый контур.

    Совет. При покупке б/у кондиционера обратите внимание на шильдик, где отображены технические характеристики бытового прибора. Интересующий вас параметр – (указывается в киловаттах или Британских тепловых единицах – BTU).


    Отопительная мощность аппарата больше холодильной и равна сумме двух параметров - производительность плюс тепло, выделяемое компрессором

    При некоторой доле везения вам даже не придется выпускать фреон и перепаивать трубки. Как переделать кондиционер в тепловой насос:


    Рекомендация. Если теплообменник не удается поместить в резервуар без нарушения фреоновых магистралей, постарайтесь эвакуировать газ и разрезать трубки в нужных точках (подальше от испарителя). После сборки водяного теплообменного узла контур придется спаять и заправить фреоном. Количество хладагента тоже указано на табличке.

    Теперь остается запустить самодельный ТН и отрегулировать водяной поток, добиваясь максимальной эффективности. Обратите внимание: импровизированный отопитель использует полностью заводскую «начинку», вы только переместили радиатор из воздушной среды в жидкую. Как система работает вживую, смотрите на видео мастера–умельца:

    Делаем геотермальную установку

    Если предыдущий вариант позволит добиться примерно двойной экономии, то даже самодельный земляной контур даст COP в районе 3 (три киловатта тепла на 1 кВт израсходованного электричества). Правда, финансовые и трудовые затраты тоже существенно увеличатся.

    Хотя в интернете опубликована масса примеров сборки подобных аппаратов, универсальной инструкции с чертежами не существует. Мы предложим рабочий вариант, собранный и проверенный реальным домашним мастером, хотя многие вещи придется додумывать и доделывать самостоятельно – всю информацию о тепловых насосах сложно поместить в одной публикации.

    Расчет грунтового контура и теплообменников насоса

    Следуя собственным рекомендациям, приступаем к расчетам геотермального насоса с вертикальными U-образными зондами, помещенными в скважины. Необходимо узнать общую протяженность внешнего контура, а потом – глубину и количество вертикальных шахт.

    Исходные данные для примера: нужно обогреть частный утепленный дом площадью 80 м² и высотой потолков 2.8 м, расположенный в средней полосе. на отопление производить не станем, определим потребность в тепле по площади с учетом теплоизоляции – 7 кВт.


    По желанию можно обустроить горизонтальный коллектор, но тогда придется выделить большую площадь под земляные работы

    Важное уточнение. Инженерные расчеты теплонасосов довольно сложны и требуют высокой квалификации исполнителя, данной теме посвящены целые книги. В статье приводятся упрощенные вычисления, взятые из практического опыта строителей и мастеров – любителей самоделок.

    Интенсивность теплообмена между землей и незамерзающей жидкостью, циркулирующей по контуру, зависит от типа грунтов:

    • 1 погонный метр вертикального зонда, погруженного в подземные воды, получит около 80 Вт теплоты;
    • в каменистых грунтах теплосъем составит порядка 70 Вт/м;
    • глинистые почвы, насыщенные влагой, отдадут примерно 50 Вт на 1 м коллектора;
    • сухие породы – 20 Вт/м.

    Справка. Вертикальный зонд представляет собой 2 петли из труб, опущенных до дна скважины и залитых бетоном.

    Пример вычисления длины трубы. Чтобы извлечь из сырой глинистой породы необходимые 7 кВт тепловой энергии, понадобится 7000 Вт поделить на показатель 50 Вт/м, получаем общую глубину зонда 140 м. Теперь трубопровод распределяется по скважинам глубиной 20 м, которые вы сможете пробурить своими руками. Итого 7 сверлений по 2 теплообменных петли, общая протяженность трубы – 7 х 20 х 4 = 560 м.

    Следующий этап – расчет площади теплообмена испарителя и конденсора. На различных интернет-ресурсах и форумах предлагаются некие расчетные формулы, в большинстве случаев – некорректные. Мы не возьмем на себя смелость рекомендовать подобные методики и вводить вас в заблуждение, но предложим некий хитрый вариант:

    1. Обратитесь к любому известному производителю пластинчатых теплообменников, например, Alfa Laval, Kaori, «Анвитэк» и так далее. Можно выйти на официальный сайт бренда.
    2. Заполните форму подбора теплообменника либо созвонитесь с менеджером и закажите подбор агрегата, перечислив параметры сред (антифриз, фреон) – температуру на входе и выходе, тепловую нагрузку.
    3. Специалист фирмы произведет необходимые расчеты и предложит подходящую модель теплообменника. Среди его характеристик вы найдете главную – площадь поверхности обмена.

    Пластинчатые агрегаты очень эффективны, но дороги (200-500 евро). Дешевле собрать кожухотрубный теплообменник из медной трубки наружным диаметром 9.5 или 12.7 мм. Выданную производителем цифру умножьте на коэффициент запаса 1.1 и поделите на длину окружности трубы, получите метраж.


    Пластинчатый теплообменник из нержавейки – идеальный вариант испарителя, он эффективен и занимает мало места. Проблема в высокой цене изделия

    Пример. Площадь теплового обмена предложенного агрегата составила 0.9 м². Выбрав медную трубку ½” диаметром 12.7 мм, вычисляем длину окружности в метрах: 12.7 х 3.14 / 1000 ≈ 0.04 м. Определяем общий метраж: 0.9 х 1.1 / 0.04 ≈ 25 м.

    Оборудование и материалы

    Будущий тепловой насос предлагается строить на базе наружного блока сплит-системы подходящей мощности (указана на табличке). Почему лучше использовать б/у кондиционер:

    • аппарат уже оснащен всеми комплектующими – компрессором, дросселем, ресивером и пусковой электрикой;
    • самодельные теплообменники можно поместить в корпус холодильной машины;
    • есть удобные сервисные порты для заправки фреона.

    Примечание. Разбирающиеся в теме пользователи подбирают оборудование отдельно – компрессор, ТРВ, контроллер и так далее. При наличии опыта и знаний подобный подход только приветствуется.

    Собирать ТН на базе старого холодильника нецелесообразно – мощность агрегата слишком мала. В лучшем случае удастся «выжать» до 1 кВт теплоты, чего хватит на обогрев одной небольшой комнаты.

    Помимо внешнего блока «сплита» понадобятся следующие материалы:

    • труба ПНД Ø20 мм – на земляной контур;
    • полиэтиленовые фитинги для сборки коллекторов и подключения к теплообменникам;
    • циркуляционные насосы – 2 шт.;
    • манометры, термометры;
    • качественный водопроводный шланг либо труба ПНД диаметром 25-32 мм на оболочку испарителя и конденсатора;
    • трубка медная Ø9.5-12.7 мм с толщиной стенки не менее 1 мм;
    • утеплитель для трубопроводов и фреоновых магистралей;
    • комплект для герметизации греющих кабелей, укладываемых внутри водопровода (понадобится для уплотнения концов медных трубок).

    Комплект втулок для герметичного ввода медной трубки

    В качестве внешнего теплоносителя применяется солевой раствор воды либо антифриз для отопления – этиленгликоль. Также понадобится запас фреона, чья марка указана на шильдике сплит-системы.

    Сборка теплообменного блока

    Перед началом монтажных работ наружный модуль надо разобрать – снять все крышки, удалить вентилятор и большой штатный радиатор. Отключите электромагнит, управляющий реверсивным клапаном, если не планируете использовать насос в качестве охладителя. Датчики температуры и давления необходимо сохранить.

    Порядок сборки основного блока ТН:

    1. Изготовьте конденсор и испаритель, просунув медную трубку внутрь шланга расчетной длины. На концах установите тройники для присоединения грунтового и отопительного контура, выступающие медные трубки уплотните с помощью специального комплекта для греющего кабеля.
    2. Используя в качестве сердечника отрезок пластиковой трубы Ø150-250 мм, намотайте самодельные двухтрубные контуры и выведите концы в нужные стороны, как это делается ниже на видео.
    3. Разместите и закрепите оба кожухотрубных теплообменника на месте штатного радиатора, медные трубки подпаяйте к соответствующим выводам. «Горячий» теплообменник–конденсатор лучше подключить к сервисным портам.
    4. Установите заводские датчики, измеряющие температуру хладагента. Утеплите голые участки трубок и сами теплообменные устройства.
    5. На водяных магистралях поставьте термометры и манометры.

    Совет. Если планируется ставить основной блок на улице, нужно принять меры от застывания масла в компрессоре. Приобретите и смонтируйте зимний комплект электрического подогрева масляного картера.

    На тематических форумах встречается другой способ изготовления испарителя – трубка из меди навивается спиралью, затем вставляется внутрь закрытой емкости (бака или бочки). Вариант вполне разумен при большом количестве витков, когда рассчитанный теплообменник попросту не помещается в корпусе кондиционера.

    Устройство грунтового контура

    На данном этапе выполняются несложные, но трудоемкие земляные работы и раскладка зондов по скважинам. Последние можно проделать вручную либо пригласить буровую машину. Расстояние между соседними скважинами – не менее 5 м. Дальнейший порядок работ:

    1. Прокопайте между сверлениями неглубокую траншею для укладки подводящих трубопроводов.
    2. В каждое отверстие опустите по 2 петли из полиэтиленовых труб и залейте ямы бетоном.
    3. Сведите магистрали к точке соединения и смонтируйте общий коллектор, используя фитинги ПНД.
    4. Проложенные в земле трубопроводы утеплите и засыпьте грунтом.

    Слева на фото – опускание зонда в обсадную пластиковую трубу, справа – прокладка подводок в траншее

    Важный момент. Перед бетонированием и засыпкой обязательно проверьте герметичность контура. Например, подключите к коллектору воздушный компрессор, накачайте давление 3-4 Бар и оставьте на несколько часов.

    При соединении магистралей ориентируйтесь по схеме, представленной ниже. Отводы с кранами понадобятся при заполнении системы рассолом либо этиленгликолем. Две основные трубы от коллектора подведите к тепловому насосу и подключите к «холодному» теплообменнику–испарителю.


    В высших точках обеих водяных контуров обязательно ставятся воздухоотводчики, на схеме условно не показаны

    Не забудьте установить насосный агрегат, отвечающий за циркуляцию жидкости, направление течения – навстречу фреону в испарителе. Среды, проходящие через конденсор и испаритель, должны двигаться навстречу друг другу. Как правильно заполнить магистрали «холодной» стороны, смотрите на видео:

    Аналогичным образом конденсор подсоединяется к домовой системе теплых полов. Смесительный узел с трехходовым клапаном монтировать необязательно благодаря низкой температуре подачи. Если необходимо объединить ТН с другими источниками тепла (солнечные коллекторы, котлы), используйте на несколько выводов.

    Заправка и запуск системы

    После монтажа и подключения агрегата к электросети наступает важный этап – заполнение системы хладагентом. Здесь ожидает подводный камень: вы не знаете, сколько фреона необходимо заправить, ведь объем основного контура сильно вырос за счет установки самодельного конденсатора с испарителем.

    Вопрос решается методом заправки по давлению и температуре перегрева хладона, измеряемой на входе компрессора (туда фреон подается в газообразном состоянии). Подробная инструкция по заполнению методом измерения температуры изложена в .

    Во второй части представленного видео рассказывается, как нужно заполнять систему фреоном марки R22 по давлению и температуре перегрева хладагента:

    По окончании заправки включите оба циркуляционных насоса на первую скорость и запускайте компрессор в работу. Показатели температуры рассола и внутреннего теплоносителя контролируйте по термометрам. На этапе прогрева магистрали с хладагентом могут обмерзать, впоследствии иней должен растаять.

    Заключение

    Сделать и запустить тепловой геотермальный насос своими руками весьма непросто. Наверняка потребуются неоднократные доработки, исправления ошибок, настройки. Как правило, большинство неполадок в самодельных ТН возникает из-за неправильной сборки либо заправки основного теплообменного контура. Если агрегат сразу отказал (сработала автоматика безопасности) либо не греет теплоноситель, стоит вызвать мастера по холодильному оборудованию – он проведет диагностику и укажет на допущенные ошибки.

    Тепловой насос – это устройство, которое нагревает воду систем отопления и горячего водоснабжения, сжимая фреон, изначально подогретый от источника низкопотенциального тепла, компрессором до 28 бар. Подвергаясь высокому давлению, газообразный теплоноситель с изначальной температурой 5-10 °С; выделяет большое количество тепла. Что позволяет прогреть теплоноситель системы потребления до 50-60 °С, без применения традиционных видов топлива. Поэтому считается, что тепловой насос обеспечивает пользователя самым дешёвым теплом.

    Подробнее о достоинствах и недостатках смотрите видео:

    Подобное оборудование уже более 40 лет эксплуатируется в Швеции, Дании, Финляндии и других странах, на государственном уровне поддерживающих развитие альтернативной энергетики. Не так активно, но увереннее с каждым годом, тепловые насосы выходят на российский рынок.

    Цель статьи: сделать обзор популярных моделей тепловых насосов. Информация будет полезна тому, кто стремится максимально сэкономить на отоплении и горячем водоснабжении собственного дома.

    Тепловой насос обогревает дом бесплатной энергией природы

    В теории, отбор тепла возможен из воздуха, грунта, грунтовых вод, сточных вод (в том числе из септика и КНС), открытыъ водоёмов. На практике – для большинства случаев доказана целесообразность использования оборудования, забирающего тепловую энергию из воздуха и грунта.

    Варианты с отбором тепла от септика или канализационной насосной станции (КНС) – самые заманчивые. Прогоняя через ТН теплоноситель с 15-20 °С, на выходе можно получить не менее 70 °С. Но приемлем этот вариант только для системы горячего водоснабжения. Отопительный контур снижает температуру в «заманчивом» источнике. Что ведёт к ряду неприятных последствий. Например, обмерзанию стоков; а если теплообменный контур теплового насоса размещён на стенках отстойника, то и самого септика.

    Самые популярные ТН под потребности СО и ГВС – геотермальные (использующие тепло земли) устройства. Они выделяются наилучшими эксплуатационными показателями в условиях тёплого и холодного климата, в песчаном и глинистом грунте с разным уровнем грунтовых вод. Потому что температура грунта ниже глубины промерзания почти не изменяется на протяжении всего года.

    Принцип действия теплового насоса

    Теплоноситель нагревается от источника низкопотенциального (5…10 °С) тепла. Насос сжимает хладагент, температура которого при этом повышается (50…60 °С) и нагревает теплоноситель системы отопления или ГВС.

    В процессе работы ТН задействованы три тепловых контура:

    • наружный (система с теплоносителем и циркуляционным насосом);
    • промежуточный (теплообменник, компрессор, конденсатор, испаритель, дроссельный клапан);
    • контур потребителя (циркуляционный насос, тёплый пол, радиаторы; у ГВС – бак, точки водоразбора).

    Сам процесс выглядит следующим образом:


    Контур съёма тепловой энергии

    1. Грунт нагревает солевой раствор.
    2. Циркуляционный насос поднимает рассол в теплообменник.
    3. Раствор охлаждается хладагентом (фреоном) и возвращается в грунт.

    Теплообменник

    1. Жидкий фреон, испаряясь, забирает тепловую энергию у рассола.
    2. Компрессор сжимает хладагент, его температура резко повышается.
    3. В конденсаторе фреон через испаритель отдаёт энергию теплоносителю отопительного контура и снова становится жидким.
    4. Остывший хладагент, через дроссельный клапан уходит к первому теплообменнику.

    Отопительный контур

    1. Подогретый теплоноситель отопительной системы подтягивается циркуляционным насосом к рассеивающим элементам.
    2. Отдаёт тепловую энергию воздушной массе помещения.
    3. Остывший теплоноситель по обратной трубе возвращается к промежуточному теплообменнику.

    Видео с подробным описанием процесса:

    Что дешевле для отопления: электричество, газ или тепловой насос?

    Приведем затраты на подключение каждого из типа отопления. Для представления общей картины возьмем Московскую область. В регионах цены могут отличаться, но соотношение цен останется прежним. В расчетах принимаем, что участок «голый» — без проведеного газа и электричества.

    Затраты на подключение

    Тепловой насос. Укладка горизонтального контура по ценам МО – 10 000 рублей за смену экскаватора с кубовым ковшом (выбирает до 1 000 м³ грунта за 8 часов). Система для дома в 100 м² будет закопана за 2 дня (справедливо для суглинка, на котором можно снять до 30 Вт тепловой энергии с 1 м.п. контура). Порядка 5 000 рублей потребуется для подготовки контура к работе. В итоге, горизонтальный вариант размещения первичного контура обойдётся в 25 000.

    Скважина выйдет дороже (1 000 рублей за погонный метр, с учётом монтажа зондов, обвязки их в одну магистраль, заправкой теплоносителем и опрессовкой.), но значительно выгоднее для будущей эксплуатации. При меньшей занятой площади участка возрастает отдача (для скважины 50 м – минимум 50 Вт с метра). Покрываются потребности насоса, появляется дополнительный потенциал. Поэтому вся система будет работать не на износ, а с некоторым запасом мощности. Разместить 350 метров контура в вертикальных скважинах – 350 000 рублей.

    Газовый котёл. В Московской области за подключение к газовой сети, работы на участке и монтаж котла «Мособлгаз» запрашивает от 260 000 рублей.

    Электрический котел. Подключение трёхфазной сети обойдётся в 10 000 рублей: 550 – местным электросетям, остальное – на распределительный щит, счётчик и прочее наполнение.

    Потребление

    Для работы ТН с тепловой мощностью 9 кВт требуется 2.7 кВт/ч электроэнергии – 9 руб. 53 коп. в час,

    Удельная теплота при сгорании 1 м³ газа – те же 9 кВт. Бытовой газ для МО выставлен по 5 руб. 14 коп. за куб.

    Электрокотёл потребляет 9 кВт/ч = 31 руб. 77 коп. в час. Разница с ТН – почти в 3,5 раза.

    Эксплуатация

    • Если подведён газ, то наиболее рентабельный вариант для отопления – газовый котёл. Стоит оборудование (9 кВт) минимум 26 000 рублей, месячная оплата за газ (по 12 ч/сутки) составит 1 850 рублей.
    • Мощное электрооборудование выгоднее с точки зрения организации трёхфазной сети и приобретения самого оборудования (котлы – от 10 000 рублей). Тёплый дом будет стоить 11 437 рублей за месяц.
    • С учётом первоначальных вложений в альтернативное отопление (оборудование 275 000 и монтаж горизонтального контура 25 000), ТН, расходующий электричества на 3 430 руб/месяц, окупится не ранее чем через 3 года.

    Сравнивая все варианты отопления, при условии создания системы «с нуля», становится очевидным: газ будет не намного выгоднее геотермального теплонасоса, а обогрев электричеством в перспективе 3 лет безнадёжно проигрывает обоим этим вариантам.

    С подробными расчётами в пользу эксплуатации теплового насоса можно ознакомиться, просмотрев видео от производителя:

    Некоторые дополнения и опыт эффективной эксплуатации освещены в этом ролике:

    Основные характеристики

    При выборе оборудования из всего многообразия характеристик обратите внимание на следующие характеристики.

    Основные характеристики тепловых насосов
    Характеристики Диапазон значений Особенности
    Тепловая мощность, кВт До 8 Помещения площадью не более 80 – 100 м², при высоте потолка не более 3 м.
    8-25 Для одноуровневых дачных домов с потолком 2.5м, площадью от 50 м²; коттеджей для ПМЖ, до 260 м².
    Свыше 25 Целесообразно рассматривать для 2-3 уровневых жилых домов с потолками 2.7м; промышленных объектов – не более 150 м², при высоте потолка в 3 и более.
    Потребляемая мощность основного оборудования (предельное потребление вспомогательных элементов) кВт/ч От 2 (от 6) Характеризует энергопотребление компрессора и циркуляционных насосов (тэна).
    Схема работы Воздух-воздух Трансформированная тепловая энергия воздуха передаётся в помещение потоком прогретого воздуха через сплит-систему.
    Воздух — вода Энергия, снятая с пропущенного через прибор воздуха, передаётся теплоносителю жидкостной отопительной системы.
    Рассол-вода Передачу тепловой энергии от возобновляемого источника выполняет натриевый или кальциевый раствор.
    Вода-вода По магистрали открытого первичного контура грунтовые воды несут тепловую энергию прямо к теплообменнику.
    Температура теплоносителя на выходе, °С 55-70 Показатель важен для расчёта потерь на длинном отопительном контуре и при организации дополнительной системы горячего теплоснабжения.
    Сетевое напряжение, V 220, 380 Однофазные – потребляемая мощность не более 5.5 кВт, только для стабильной (малонагруженной) бытовой сети; самые дешёвые – только через стабилизатор. Если есть сеть 380 V, то трёхфазные приборы предпочтительнее – больший диапазон мощностей, меньше вероятность «просадить» сеть.

    Сводная таблица моделей

    В статье мы рассмотрели наиболее популярные модели, выявили их сильные и слабые стороны. С перечнем моделей можете ознакомиться в следующей таблице:

    Сводная таблица моделей
    Модель (страна производитель) Особенности Цена, руб.

    Тепловые насосы для отопления небольших помещений или под ГВС

    1. Система «воздух-вода»; работает от однофазной сети; выступающая конденсационная линия вставляется в бак с водой. 184 493
    2. «Рассол-вода»; питание от трёхфазной сети; вариативное управление мощностью; возможность подключения дополнительного оборудования – рекуператора, разнотемпературного оборудования. 355 161
    3. Тепловой насос типа «воздух – вода» с питанием от сети 220V и функцией защиты от замерзания. 524 640
    Оборудование для отопительных систем коттеджей под ПМЖ
    4. Схема «вода – вода». Для того чтобы ТН мог выдавать стабильные 62 °С теплоносителя в системе отопления, возможности комплекта из компрессора и насосов (1.5 кВт) дополняет электронагреватель мощностью в 6 кВт. 408 219
    5. На базе схемы «воздух-вода», в одном приборе, состоящим из двух блоков, реализованы потенциалы охладительного и нагревательного устройств. 275 000
    6. «рассол-вода», прибор прогревает теплоноситель для радиаторов до 60 °С, может использоваться при организации каскадных систем отопления. 323 300
    7. В одном корпусе с геотермальным насосом размещён накопительный бак для системы горячего водоснабжения, на 180 литров теплоносителя 1 607 830
    Мощные тепловые насосы для нужд систем отопления и горячего водоснабжения
    8. Возможен отбор тепла от грунта и грунтовых вод; возможны эксплуатация в составе каскадных систем и удалённое управление; работает от трёхфазной сети. 708 521
    9. «рассол-вода»; управление мощностью компрессора и частотой вращения циркуляционных насосов осуществляется посредством частотной регулировки; дополнительный теплообменник; сеть – 380 V. 1 180 453
    10. схема работы «вода-вода»; встроенные насосы первичного и вторичного контура; предусмотрена возможность подключения гелиосистем. 630 125

    Тепловые насосы для отопления небольших помещений или под ГВС

    Предназначение – экономичное отопление жилых и вспомогательных помещений, обслуживание системы горячего водоснабжения. Самым низким потреблением (до 2 кВт) выделяются однофазные модели. Для защиты от скачков напряжения в сети им нужен стабилизатор. Надёжность трёхфазных, объясняется особенностями сети (нагрузка распределяется равномерно) и присутствием собственных защитных цепей, предотвращающих повреждение устройства при перепадах напряжения. Оборудование этой категории не всегда справляется с одновременным обслуживанием системы отопления и контура горячего водоснабжения.

    1. Huch EnTEC VARIO КНР S2-E (Германия) – от 184 493 руб.

    Huch EnTEC VARIO самостоятельно не эксплуатируется. Только в связке с накопительным баком системы горячего водоснабжения. ТН подогревает воду для санитарных нужд, охлаждая воздух в помещении.


    Из преимуществ – небольшое энергопотребление прибора, приемлемая температура воды в контуре ГВС и функция очистки системы (периодическим кратковременным нагреванием до 60 °С) от патогенных бактерий, развивающихся во влажной среде.

    Минусы в том, что прокладки, фланцы и манжету, надо докупать отдельно. Обязательно оригинальные, иначе будут потёки.

    При расчёте необходимо помнить, что устройство прокачивает 500 м³ воздуха в час, поэтому минимальная площадь помещения, в котором установлен Huch EnTEC VARIO, должна быть не менее 20 м², при высоте потолка в 3 и более метра.

    2. NIBE F1155-6 EXP (Швеция) – от 355 161 руб.

    Модель заявлена, как «интеллектуальное» оборудование, с автоматической настройкой под потребности объекта. Внедрена инверторная схема питания компрессора – появилась возможность настраивать выходную мощность.


    Присутствие такой функции при малом числе потребителей (точки водоразбора, радиаторы отопления), делает отопление небольшого дома более выгодным, чем в случае с обычным, неинверторным ТН (у которых нет плавного пуска компрессора и выходная мощность не регулируется). Потому что у NIBE, при малых значениях мощности, тэны включаются редко, а собственное максимальное потребление теплового насоса – не более 2 кВт.

    В условиях небольшого объекта шум (47 ДБ) не приемлем. Оптимальный вариант установки – отдельное помещение. Обвязку размещать на стенах не примыкающим к комнатам для отдыха.

    3. Fujitsu WSYA100DD6 (Япония) – от 524 640 руб.

    «Из коробки» работает только на нагрев в одном контуре. Опционально предлагается комплект для подключения второго контура, с возможностью независимой настройки для каждого. Но сам тепловой насос рассчитан на систему отопления помещения до 100 м², с высотой потолка не более 3 метров.


    В списке преимуществ – небольшие габариты, работа от бытовой электросети, регулировка температуры на выходе 8…55 °С, что по замыслу производителя должно было как-то повлиять на комфорт и точность управления подключенными системами.

    Но всё перечеркнула низкая мощность. В нашем климате, отапливая заявленные 100 м², устройство будет работать на износ. Что подтверждают частые переходы устройства в «аварийный» режим, с отключением помпы и ошибками на дисплее. Случай не гарантийный. Исправляется перезапуском оборудования.

    «Аварии» влияют на расход электроэнергии. Потому что когда умолкает компрессор, в работу включается тэн. Поэтому совместное подключение контуров СО и тёплого пола (или ГВС) допустимо на объекте площадью не более 70 м².

    Оборудование для отопительных систем типовых коттеджей под ПМЖ

    Здесь представлены геотермальные, воздушные и водяные (снимающие тепловую энергию с грунтовых вод) устройства. Заявленной выходной мощности (не менее 8 кВт) достаточно чтобы обеспечить теплом все потребительские системы дачных (и ПМЖ) домов. У многих тепловых насосов этой категории есть режим охлаждения. Внедрённые инверторные схемы питания отвечают за плавный пуск компрессора, из-за его плавной работы снижается дельта (разница температур) теплоносителя. Выдерживается оптимальный режим работы контура (без лишних перегревов и выхолаживаний). Что позволяет снизить расход электроэнергии во всех режимах работы ТН. Наибольший экономический эффект – в устройствах «воздух-воздух».

    4. Vaillant geoTHERM VWW 61/3 (Германия) – от 408 219 руб.

    Использование воды из скважины в качестве теплоносителя первого контура (только VWW) позволило упростить конструкцию и снизить цену ТН без потери в производительности.


    Устройство отличается малым энергопотреблением в основном режиме работы и низким уровнем шума.

    Минус Vaillant – требовательность к воде (известные случаи повреждения подающей магистрали и теплообменника соединениями железа и марганца); следует исключить работу с солесодержащими водами. Ситуация не гарантийная, но если монтаж выполняли специалисты сервисного центра, то есть кому выставлять претензии.

    Необходимо сухое, непромерзаемое помещение, объёмом не менее 6.1 м³ (2.44 м² при потолке 2.5 м). Каплеобразование под насосом – не брак (допускается стекание конденсата с поверхностей заизолированных контуров).

    5. LG Therma V AH-W096A0 (Корея) – от 275 000 руб.

    Тепловой насос системы «воздух-вода». Прибор составляют 2 модуля: наружный забирает тепловую энергию у воздушных масс, внутренний трансформирует и передаёт её системе отопления.


    Главный плюс – универсальность. Можно настроить, как для обогрева, так и для охлаждения объекта.

    Недостаток этой серии LG Therma в том, что его (и всей линейки) потенциала, не хватит для нужд коттеджа, площадью более 200 м².

    Важный момент: рабочие блоки двухкомпонентной системы нельзя разносить более чем на 50 м в горизонтальной плоскости и на 30 м по вертикали.

    6. STIEBEL ELTRON WPF 10MS (Германия) – от 323 300 руб.

    Модель WPF 10MS – самая мощная из тепловых насосов STIEBEL ELTRON.


    Среди преимуществ – автоматически подстраиваемый режим отопления и возможность соединения 6 устройств в каскадную (это параллельное или последовательное подключение приборов с целью увеличения расхода, напора или организации аварийного резерва) систему, мощностью до 60 кВт.

    Минус в том, что организация мощной электросети, для одновременного подключения 6 таких приборов, возможна только с разрешения местного подразделения Ростехнадзора.

    Есть особенность в установке режимов: после внесения необходимых корректировок в программу, следует подождать, пока погаснет контрольная лампа. Иначе, после закрывания крышки система вернётся к исходным настройкам.

    7. Daikin EGSQH10S18A9W (Япония) – от 1 607 830 руб.

    Мощное устройство для одновременного обеспечения теплом СО, ГВС и тёплого пола жилого дома, площадью до 130 м².

    Программируемые и управляемые пользователем режимы; в рамках заданных параметров контролируются все обслуживаемые контуры; есть встроенный накопитель (для нужд ГВС) на 180 литров и вспомогательные нагреватели.

    Из недостатков – внушительный потенциал, который не будет полностью задействован в доме 130 м²; цена, из-за которой период окупаемости растягивается на неопределённый срок; не реализованная в базовой комплектации автоматическая адаптация под внешние климатические условия. Термисторы (тепловые резисторы) окружающей среды устанавливаются опционально. То есть при изменениях внешней температуры, предлагается настраивать режим работы вручную.

    Оборудование для объектов с большим потреблением тепла

    Для полного обеспечения потребностей в тепловой энергии жилых и коммерческих зданий, площадью более 200 м². Дистанционное управление, каскадная эксплуатация, взаимодействие с рекуператорами и гелиосистемами – расширяют возможности пользователя в создании комфортной температуры.

    8. WATERKOTTE EcoTouch DS 5027.5 Ai (Германия) – от 708 521 руб.

    Модификация DS 5027.5 Ai – самая мощная в линейке EcoTouch. Стабильно прогревает теплоноситель отопительного контура и обеспечивает тепловой энергией систему ГВС в помещениях до 280 м².


    Спиральный (самый производительный из существующих) компрессор; регулировка скорости потока теплоносителя позволяет получить стабильные показатели температуры на выходе; цветной дисплей; русифицированное меню; аккуратный внешний вид и низкий уровень шума. Каждая деталь для комфортной эксплуатации.

    При активном пользовании точками водоразбора включаются тэны, из-за чего энергопотребление увеличивается на 6 кВт/ч.

    9. DANFOSS DHP-R ECO 42 (Швеция) – от 1 180 453 руб.

    Достаточно мощное оборудование для того чтобы обеспечить тепловой энергией систему горячего водоснабжения и отопительные контуры многоуровневого коттеджа с постоянным проживанием.


    Вместо дополнительного обогревателя для ГВС, здесь задействован поток горячей воды с подачи отопительного контура. Пропуская уже горячую воду через пароохладитель, тепловой насос разогревает воду в дополнительном теплообменнике ГВС до 90 °С. Стабильная температура в СО и баке ГВС поддерживается за счёт автоматической регулировки скорости циркуляционных насосов. Подходит для каскадного подключения (до 8 ТН).

    Нет тэнов для отопительного контура. Дополнительные ресурсы отбираются у любого сочетаемого котла – блок управления возьмет от него столько тепла, сколько требуется в конкретном случае.

    При расчёте места под монтаж теплового насоса необходимо оставлять зазор в 300 мм между стеной и задней поверхностью устройства (для удобства контроля и обслуживания коммуникаций).

    10. Viessmann Vitocal 300-G WWC 110 (Германия) – от 630 125 руб.

    В роли теплоносителя первого контура – грунтовые воды. Отсюда и постоянная температура на первом теплообменнике, и самый высокий коэффициент СОР.


    Среди плюсов — вспомогательный электронагреватель небольшой мощности на первом контуре и фирменный контроллер (по сути – беспроводной пульт) для удалённого управления.

    Минус — работоспособность циркуляционного насоса, состояние магистрали и теплообменника первого контура зависит от качества перегоняемых грунтовых вод. Фильтрация обязательна.

    Исключить появление сложно решаемых проблем с дорогостоящим оборудованием, поможет анализ грунтовых вод. Который следует сделать до покупки теплового насоса системы «вода-вода».

    Выбор редакции

    Многолетний опыт производства и эксплуатации тепловых насосов в Северной Европе позволил нашим соотечественникам сократить область поиска самого выгодного способа обогреть свой дом. Реальные варианты существуют под любой запрос.

    Надо обеспечить теплом контур ГВС или систему отопления жилого дома до 80 — 100 м²? Рассмотрите потенциал NIBE F1155 – его «интеллектуальная» начинка экономит без ущерба теплоснабжению.

    Стабильную температуру в контурах тёплого пола, СО, ГВС коттеджа в 130 м² обеспечит –здесь задействован теплообменник ГВС (180 литров).

    Выдаёт постоянный тепловой поток одновременно для всех потребителей. Возможность создания каскада из 8 ТН позволяет обеспечить теплом объект площадью не менее 3 000 м².