Войти
Автомобильный портал - Двигатель. Замена свечей. Подсветка. Права и вождение
  • Эпифиз - квантовый компьютер в головном мозге
  • Как правильно купить квартиру через аукцион: каковы риски и особенности такого приобретения для покупателя?
  • Знак зодиака Стрелец: описание и характеристика
  • Знак зодиака Стрелец: описание и характеристика
  • Анахата чакра — за что отвечает и как ее раскрыть Кундалини йога от Майи Файнс
  • Притча о лжи Почему сила в правде
  • Значение монж, гаспар в словаре кольера. Значение монж, гаспар в словаре кольера Взаимно перпендикулярные плоскости проекций

    Значение монж, гаспар в словаре кольера. Значение монж, гаспар в словаре кольера Взаимно перпендикулярные плоскости проекций

    Первоначальное образование получил в городском училище города Бона. Преподавание в этом училище сосредоточивалось почти исключительно на древних языках; физико-математическими науками, к которым Монж имел особенное влечение, ему пришлось заниматься без посторонней помощи.

    В возрасте 16 лет Монж составил замечательный по точности план родного города Бона. Необходимые при его составлении способы и приборы для измерения углов и черчения линий были изобретены самим составителем.

    Поступив в дополнительное отделение для подготовления инженерных кондукторов Мезьерской школы военных инженеров, Монж скоро выдвинулся из среды товарищей. Данное им прямое и легкое решение задачи дефилирования укрепления дало повод начальству школы назначить его репетитором математики.

    С этого же времени начинается учёная деятельность Монжа, первым результатом которой было создание «Начертательной геометрии» - этого важнейшего из его учёных трудов. Нежелание дать иностранцам возможность пользоваться плодами изобретений французского гения побудило начальника Мезьерской школы запретить Монжу обнародование его открытия. Другим крупным трудом Монжа были исследования по теории поверхностей, изложенные в ряде мемуаров, представленных им в академии парижскую и туринскую.

    В 1768 году Монж назначен был профессором математики; кроме того, в 1771 году (по смерти аббата Нолле) кафедра физики была также передана Монжу. Следует отметить произведенное им в 1783 году разложение воды, хотя эта работа была сделана и после однородной работы Генри Кавендиша, но до получения сведений об этой последней и потому составляет неотъемлемую собственность Монжа.

    В 1780 году Монж назначен преподавателем гидравлики в школе, учрежденной в Лувре, с обязательством жить в Мезьере и в Париже по полугоду. В том же году Монж избран в члены Академии. Совсем оставить Мезьер Монжу пришлось в 1783 году.

    Избранный в академики, Монж, кроме исследований по высшему анализу, изложенных в ряде прекрасных мемуаров в изданиях Академии, занимался вместе с Бертолле и Вандермонтом изучением различных состояний железа, производил опыты над капиллярностью, делал наблюдения над оптическими явлениями, работал, хотя и неудачно, над построением теории главных метеорологических явлений, наконец, в значительной степени усовершенствовал практическую механику. В этой последней он показал, что все сложные машины, как бы сложны они ни были, приводятся к очень небольшому числу составных элементов; дал таблицы, объясняющие смену одних движений другими, вызываемую связью между частями машины; показал более выгодные способы употребления при работах сил воды, воздуха и пара. К этому же времени относится составление его известного «Traité de statique» (П., 1788). Великая французская революция нашла в Монже горячего сторонника. В эту эпоху он был назначен сперва членом комиссии установления новой системы мер и весов, а в 1792 году занял пост морского министра, остававшийся за ним до 10 апреля 1793 году.

    Несмотря на скупость государственной казны, энергии Монжа удалось отчасти пополнить опустившие арсеналы и приступить к возведению на берегах необходимых построек. Ещё важнее было то, что Монж указал и популярно изложил способы добывания из земли в хлевах, погребах и кладбищах необходимой для выделки пороха селитры и что он устроил множество литейных пушечных заводов, фабрик холодного оружия и для выделки ружей. Из его наставлений для рабочих впоследствии составился его знаменитый в артиллерийской технике труд «L’Art de fabriquer les canons» (1794).

    Не получая за всю свою работу никакого вознаграждения от обанкротившегося государства, он дошёл до такой бедности, что должен был питаться одним хлебом, а основанное на доносе привратника обвинение заставило его спасаться бегством. Быстрая смена направлений очень скоро, однако, позволила ему возвратиться в Париж. С этого времени он уже более не принимал непосредственного участия в делах государственного управления и всецело предался учёной и преподавательской деятельности.

    В учрежденной после 9 термидора Нормальной школе он впервые ввёл в программу обучения курс начертательной геометрии, записки которого, составленные слушателями, получили быстрое распространение.

    Перелом педагогической деятельности Монжа были труды по устройству преподавания и осуществлению его на деле в основанной в конце 1794 года знаменитой Политехнической школе. По закрытии в 1793 году академий и учреждении через год заменившего их Национального института, в выработке устава которого Монж принимал заметное участие, он находился в числе первых 48 членов нового учёного учреждения, которые были назначены правительством.

    Посланный в 1796 г. в Италию для приема входящих в состав военной контрибуции картин и статуй, он познакомился и подружился с Наполеоном Бонапартом. В 1798 году правительство возложило на него вместе с двумя другими лицами трудную задачу установления на основах французской конституции III года Римской республики, долженствовавшей сменить уничтоженную французскими войсками светскую власть пап. Однако же Монж и его товарищи не могли восторжествовать над трудностями возложенной на них задачи.

    Наполеон, собираясь к походу на Египет, предложил ему и Бертолле собрать учёную экспедицию, которая должна была сопровождать отправляющуюся в поход армию и имела целью изучение завоевываемых стран и распространение в них просвещения. Значительную часть этой экспедиции составили лица, принадлежавшие к Политехнической школе. 29 августа 1798 году в Каире из членов этой экспедиции и некоторых военных, к числу которых принадлежал и сам Наполеон, был образован Египетский институт, устроенный по образцу Французского и избравший своим президентом Монжа.

    Работы членов нового института помещались в издаваемой им «Décade Egyptienne», выходившей через десятидневные промежутки. В нём в первый раз появился в свет мемуар Монжа о мираже. Во времена Империи он был назначен сенатором и получил титул графа Пелузского и высшую степень ордена Почетного легиона. По его ходатайствам не раз выдавились из личных средств императора более или менее значительные суммы разным лицам в виде пособий, а однажды император прислал и ему самому сумму в 100000 франков. Мало-помалу у Монжа изменились его убеждения, обратившиеся из республиканских в империалистские.

    После падения Империи и восстановления Бурбонов Монж потерял всё полученное при Империи и даже занятое им ещё до революции кресло академика. Распоряжением правительства в 1816 году он и Карно были исключены из преобразованного на новый лад института и замещены Коши и Брегетом. От всех этих бедствий, довершенных ссылкой его зятя Эшассерио, как бывшего члена конвента, Монж психически заболел и вскоре скончался.

    Научная деятельность

    Создание «Начертательной геометрии», трактат которой появился в свет только в 1799 году под заглавием «Géométrie descriptive», послужило началом и основанием работ, позволивших новой Европе овладеть геометрическим направлением Древней Греции; работы же по теории поверхностей, помимо своего непосредственного значения, повели к выяснению важного принципа непрерывности и к раскрытию смысла той широкой неопределенности, которая порождается при интегрировании уравнений с частными производными, произвольными постоянными и ещё более появлением произвольных функций.

    Принцип непрерывности в том виде, в каком он является у Монжа, может быть изложен следующим образом. Всякое свойство фигуры, выражающее отношения положения и оправдывающееся в бесчисленном множестве непрерывно связанных между собой случаев, может быть распространено на все фигуры одного и того же рода, хотя бы оно допускало доказательство только при предположении, что построения, осуществимые не иначе как в известных пределах, могут быть произведены на самом деле. Такое свойство существует даже и в тех случаях, когда вследствие совершенного исчезновения некоторых необходимых для доказательства промежуточных величин предполагаемые построения не могут быть произведены на деле.

    Из числа менее крупных вкладов в науку следует указать на данную Монжа теорию полярных плоскостей к поверхностям второго порядка; на открытие круговых сечений гиперболоидов и гиперболического параболоида; на открытие двоякого способа образования поверхностей этих же тел с помощью прямой линии; на создание первой идеи о линиях кривизны поверхностей; на установление первых оснований теории взаимных поляр, разработанной впоследствии Понселе, и, наконец, на доказательство теоремы о том, что геометрическое место вершины трёхгранного угла с прямыми плоскими углами, описанного около поверхности второго порядка, есть шар.

    Метод Монжа, или метод проекций является методом параллельного проецирования, причем берутся прямоугольные проекции на две взаимно перпендикулярные плоскости проекций. Плоскость, расположенная горизонтально называется горизонтальной плоскостью проекций (обозначаем П1), а плоскость, расположенная вертикально, называется фронтальной плоскостью проекций (обозначаем П2).

    Линия пересечения плоскостей проекций называется осью проекций. Ось проекций разделяет каждую из плоскостей П1 и П2 на полуплоскости. Для этой оси применяется обозначение X (рисунок 3). На рисунке 4 показано построение проекций некоторой точки А в системе П1, П2.

    Рисунок 3 Рисунок 4

    Проекцию точки А на горизонтальную плоскость проекций получают с помощью проецирующего луча, который проводят через точку А перпендикулярно П1 до пересечения с ней. Точка пересечения называется горизонтальной проекцией точки А и обозначается А1.

    Фронтальная проекция точки А получается при пересечении проецирующего луча, проведенного через точку А перпендикулярно П2 и обозначается А2.

    Очень часто рассматриваются и профильные проекции точек и прямых. Профильная плоскость проекций (П3) располагается перпендикулярно к обеим плоскостям проекций (рисунок 5).

    Линии пересечения плоскостей проекций называют осями проекций. Всего осей - три: ось ОХ, ось ОУ и ось ОZ.

    Рисунок 5 Рисунок 6

    Если точку А спроецировать на все три плоскости проекций, то получим три проекции точки А – горизонтальную А1, фронтальную А2 и профильную А3 (рисунок 6). Если нужно построить комплексный чертеж или эпюр Монжа (это одно и то же) для точки А, то пространственное или наглядное изображение нужно преобразовать в плоскостное. На рисунке 7, показано, как при разворачиваются плоскости проекций: фронтальная плоскость остается на месте, горизонтальная преобразуется поворотом на 90 градусов вокруг оси ОХ до совмещения с фронтальной плоскостью, а профильная поворачивается на 90 градусов вправо вокруг оси ОZ до совмещения с фронтальной. При этом ось проекций ОУ как бы раздваивается - она участвует в образовании горизонтальной плоскости проекций и необходима для профильной плоскости проекций.

    Рисунок 7 Рисунок 8

    Таким образом, эпюр точки будет выглядеть как на рисунке 8. Причем, надо обратить внимание на то, что расстояние от точки А до плоскости П1 будет выражаться координатой Z, расстояние от точки А до плоскости П2 будет выражаться координатой У, а до плоскости П3 - координатой Х.

    Во время Директории сблизился с Наполеоном, принимал участие в его походе в Египет и основании в Каире Египетского института (1798г.); был возведен в графы.


    Монж Гаспар (10.5.1746-28.7.1818)- французский геометр и общественный деятель, Член Парижской Академии Наук (1780г.). Творец начертательной геометрии, один из организаторов Политехнической школы в Париже и ее многолетний директор. Родился в Бон Кот-д"0р. Окончил Школу военных инженеров в Мезьере. С 1768г.-профессор математики, с 1771г.-также профессор физики в этой школе. С 1780г. преподавал гидравлику в Луврской школе (Париж). Занимался математическим анализом, химией, метеорологией, практической механикой. В период Французской буржуазной революции работал в комиссии по установлению новой системы мер и весов, затем был морским министром и организатором национальной обороны. Во время Директории сблизился с Наполеоном, принимал участие в его походе в Египет и основании в Каире Египетского института (1798г.); был возведен в графы. Получил всемирное признание, создав (в 70-е годы) современные методы проекционного черчения и его основу - начертательную геометрию. Главное произведение Монжа по этим вопросам- "Начертательная геометрия"; опубликованная в 1799г. Важные открытия сделал также в дифференциальной геометрии. Первые работы Монжа об уравнениях поверхностей опубликованы в 1770г и 1773г. В 1795г и 1801г изданы работы Монжа о конечных и дифференциальных уравнениях разных поверхностей. В 1804 издана книга "Применение анализа в геометрии". В ней Монж рассматривал цилиндрические и конические поверхности, образуемые движением горизонтальной прямой, проходящей через фиксированную вертикальную прямую, поверхности "каналов", поверхности, в которых линии наибольшего уклона везде образуют постоянный угол с горизонтальной плоскостью; поверхности перенесения и т. д. В качестве приложения к книге Монж дал свою теорию интегрирования уравнений с частными производными 1-го порядка и свое решение задачи о колебании струны. Для каждого из видов поверхностей вывел сначала дифференциальное, потом конечное уравнение. Первый обозначил буквами p и q частные производные от z по x и у, а буквами r, s и t- производные 2-го порядка.

    ] Перевод В.Ф. Газе. Комментарии и редакция Д.И. Каргина. Под общей редакцией Т.П. Кравца.
    (Издательство Академии Наук СССР, 1947. - Серия «Классики науки»)
    Скан, обработка, формат Djv: ???, добавления и исправления: AAW, mor, 2010

    • ОГЛАВЛЕНИЕ:
      НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ
      Программа (9).
      Раздел первый
      1. Предмет начертательной геометрии (13).
      2-9. Соображения, по которым определяется положение точки в пространстве. О методе проекций (фиг.1-3) (13).
      10. Сравнение начертательной геометрии с алгеброй (27).
      11-13. Основное положение представления формы и положения поверхностей. Применение и плоскости (28).
      14-22. Решение некоторых элементарных задач на прямую линию и плоскость (фиг.4-11) (33).
      Раздел второй
      23-26. О касательных плоскостях и нормалях к кривым поверхностям (45).
      27-31. Способ построения касательных плоскостей в данных точках кривых поверхностей (фиг.12-15) (48).
      32. Условия, определяющие положение плоскости, касательной к любой кривой поверхности; замечания о развертываемых поверхностях (59).
      33-34. О плоскостях, касательных к поверхностям в проходящих через точки, заданные вне этих поверхностей (62).
      35-44. О плоскости, касательной к поверхности одного или нескольких шаров. Замечательные свойства круга, шара, конических сечений и кривых поверхностей второго порядка (фиг.16-22) (65).
      45-47. О плоскости, касательной к поверхностям цилиндрической, конической и поверхности вращения, проведенной через точки, заданные вне этих поверхностей (фиг.23-25) (81).
      Раздел третий
      48. О пересечении кривых поверхностей. Определение кривых двоякой кривизны (89).
      49-50. Соответствие между операциями в начертательной геометрии и исключением неизвестных в алгебре (90).
      51-56. Общий способ определения проекций линий пересечения поверхностей. Видоизменения этого способа для некоторых частных случаев (фиг.26) (92).
      57-58. Касательные к линиям пересечения поверхностей (98).
      59-83. Пересечения поверхностей: цилиндрической, конической и т.д. Развертки этих пересечении в тех случаях, когда одна на поверхностей, к которым они принадлежат, развертываемая (фиг.27-35) (100).
      84-87. Способ Роберваля построения касательной к кривой, заданной законом движения образующей точки. Применение этого способа к эллипсу и к линии пересечения двух эллипсоидов вращения, имеющих общий фокус (фиг.36-37) (128).
      Раздел четвертый
      88-102. Применение пересечений поверхностей к решению различных задач (фиг.38-42) (132).
      Раздел пятый
      103-109. О кривых плоских и двоякой кривизны, об их эволютах, эвольвентах и радиусах кривизны (фнг.43-45) (156).
      110-112. О поверхности, являющейся геометрическим местом эволют кривой двоякой кривизны; замечательное свойство эволют, рассмотренных на этой поверхности. Образование любой кривой двоякой кривизны непрерывным движением (163).
      113-124. О кривых поверхностях. Доказательство теоремы: «Каждая поверхность имеет в любой своей точке только две кривизны; каждая кривизна имеет свое собственное направление, свой собственный радиус, а две дуги, по которым эти кривизны измеряются, перпендикулярны друг другу на поверхности (фиг.46-48) (166).
      125-129. О линиях кривизны любой поверхности, о ее центрах кривизны и о поверхности, являющейся их геометрическим местом. Применение к делению сводов на клинчатые камни и к искусству гравирования (фиг.49) (176).
      130-131. Разрезка камней сводов (180).
      ТЕОРИЯ ТЕНЕЙ
      132. О пользе теней, нанесенных на эпюрах (187).
      133-135. О построении теней (фиг.50-52) (189).
      ТЕОРИЯ ПЕРСПЕКТИВЫ
      136-139 Способы изображения предметов в перспективе (фиг.53) (212).
      140-142. Об определении оттенков в изображении предметов и о воздушной перспективе (223).
      143. Об изменениях цветов при некоторых обстоятельствах (233).
      ПРИЛОЖЕНИЯ
      Д.И. Картин. Гаспар Монж и его «Начертательная геометрия» (245).
      А.М. Лукомская. Перечень трудов и литературы о жизни и деятельности Гаспара Монжа (258).
      Примечания (271).

    Если информацию о расстоянии точки относительно плоскости проекции дать не с помощью числовой отметки, а с помощью второй проекции точки, построенной на второй плоскости проекций, то чертеж называют двухкартинным или комплексным. Основные принципы построения таких чертежей изложены Г. Монжем.

    Изложенный Монжем метод - метод ортогонального проецирования, причем берутся две проекции на две взаимно перпендикулярные плоскости проекций, - обеспечивая выразительность, точность и удобоизмеримость изображений предметов на плоскости, был и остается основным методом составления технических чертежей.

    Модель трех плоскостей проекций показана на рисунке. Третья плоскость, перпендикулярная и П1, и П2, обозначается буквой П3 и называется профильной. Проекции точек на эту плоскость обозначаются заглавными буквами или цифрами с индексом 3. Плоскости проекций, попарно пересекаясь, определяют три оси 0x, 0y и 0z, которые можно рассматривать как систему декартовых координат в пространстве с началом в точке 0. Три плоскости проекций делят пространство на восемь трехгранных углов - октантов. Как и прежде, будем считать, что зритель, рассматривающий предмет, находится в первом октанте. Для получения эпюра точки в системе трех плоскостей проекций плоскости П1 и П3 вращают до совмещения с плоскостью П2. При обозначении осей на эпюре отрицательные полуоси обычно не указывают. Если существенно только само изображение предмета, а не его положение относительно плоскостей проекций, то оси на эпюре не показывают. Координатами называют числа, которые ставят в соответствие точке для определения ее положения в пространстве или на поверхности. В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат x , y и z (абсцисса, ордината и аппликата).

    Лекция 7, СРСП-7

    2. Расположение прямой относительно плоскостей проекций.

    3. Взаимное расположение точки и прямой, двух прямых.

    Проецирование прямой

    Для определения положения прямой в пространстве существуют следующие методы: 1.Двумя точками (А и В). Рассмотрим две точки в пространстве А и В (рис.). Через эти точки можно провести прямую линию получим отрезок . Для того чтобы найти проекции этого отрезка на плоскости проекций необходимо найти проекции точек А и В и соединить их прямой. Каждая из проекций отрезка на плоскости проекций меньше самого отрезка: <; <; <.

    2. Двумя плоскостями (a; b). Этот способ задания определяется тем что две непараллельные плоскости пересекаются в пространстве по прямой линии (этот способ подробно рассматривается в курсе элементарной геометрии).

    3. Точкой и углами наклона к плоскостям проекций. Зная координаты точки принадлежащей прямой и углы наклона ее к плоскостям проекций можно найти положение прямой в пространстве.

    Взависимости от положения прямой по отношению к плоскостям проекций она может занимать как общее, так и частные положения. 1. Прямая не параллельная ни одной плоскости проекций называется прямой общего положения (рис.).

    2. Прямые параллельные плоскостям проекций, занимают частное положение в прострнстве и называются прямыми уровня. В зависимости от того, какой плоскости проекций параллельна заданная прямая, различают:

    2.1. Прямые параллельные горизонтальной плоскости проекций называются горизонтальными или горизонталями (рис.).

    2.2. Прямые параллельные фронтальной плоскости проекций называются фронтальными или фронталями(рис.).

    2.3. Прямые параллельные профильной плоскости проекций называются профильными (рис.).

    3. Прямые, перпендикулярные плоскостям проекций, называются проецирующими. Прямая перпендикулярная одной плоскости проекций, параллельна двум другим. В зависимости от того, какой плоскости проекций перпендикулярна исследуемая прямая, различают:

    3.1. Фронтально-проецирующая прямая - АВ (рис.).

    3.2. Профильно проецирующая прямая - АВ (рис.).