Войти
Автомобильный портал - Двигатель. Замена свечей. Подсветка. Права и вождение
  • Эпифиз - квантовый компьютер в головном мозге
  • Как правильно купить квартиру через аукцион: каковы риски и особенности такого приобретения для покупателя?
  • Знак зодиака Стрелец: описание и характеристика
  • Знак зодиака Стрелец: описание и характеристика
  • Анахата чакра — за что отвечает и как ее раскрыть Кундалини йога от Майи Файнс
  • Притча о лжи Почему сила в правде
  • Закон полноты частей системы. Система законов развития техники (основы теории развития технических систем) Закон увеличения степени идеальности системы

    Закон полноты частей системы. Система законов развития техники (основы теории развития технических систем) Закон увеличения степени идеальности системы

    Закон увеличения степени идеальности системы

    Техническая система в своём развитии приближается к идеальности. Достигнув идеала, система должна исчезнуть, а её функция продолжать выполняться.

    Основные пути приближения к идеалу:

    · повышение количества выполняемых функций,

    · «свертывание» в рабочий орган,

    · переход в надсистему.

    При приближении к идеалу техническая система вначале борется с силами природы, затем приспосабливается к ним и, наконец, использует их для своих целей.

    Закон увеличения идеальности наиболее эффективно применяется к тому элементу, который непосредственно расположен в зоне возникновения конфликта или сам порождает нежелательные явления. При этом повышение степени идеальности, как правило, осуществляется применением незадействованных ранее ресурсов (веществ, полей), имеющихся в зоне возникновения задачи. Чем дальше от зоны возникновения конфликта будут взяты ресурсы, тем в меньшей степени удастся продвинуться к идеалу.

    Закон S-образного развития технических систем

    Эволюцию множества систем можно изобразить S-образной кривой, показывающей, как меняются во времени темпы её развития. Выделяются три характерных этапа:

    1. «детство» . Идёт, как правило, достаточно долго. В этот момент идёт проектирование системы, её доработка, изготовление опытного образца, подготовка к серийному выпуску.

    2. «расцвет» . Она бурно совершенствуется, становится всё более мощной и производительной. Машина выпускается серийно, её качество улучшается и спрос на неё растёт.

    3. «старость» . С какого-то момента улучшать систему становится всё труднее. Мало помогают даже крупные увеличения ассигнований. Несмотря на усилия конструкторов, развитие системы не поспевает за всё возрастающими потребностями человека. Она пробуксовывает, топчется на месте, меняет свои внешние очертания, но остаётся такой, какая есть, со всеми своими недостатками. Все ресурсы окончательно выбраны. Если попытаться в этот момент искусственно увеличивать количественные показатели системы или развивать её габариты, оставляя прежний принцип, то сама система вступает в конфликт с окружающей средой и человеком. Она начинает больше приносить вреда, чем пользы.



    В качестве примера рассмотрим паровоз. Вначале был достаточно долгий экспериментальный этап с единичными несовершенными экземплярами, внедрение которых вдобавок сопровождалось сопротивлением общества. Затем последовало бурное развитие термодинамики, совершенствование паровых машин, железных дорог, сервиса - и паровоз получает публичное признание и инвестиции в дальнейшее развитие. Затем, несмотря на активное финансирование, произошёл выход на природные ограничения: предельный тепловой КПД, конфликт с окружающей средой, неспособность увеличивать мощность без увеличения массы - и, как следствие, в области начался технологический застой. И, наконец, произошло вытеснение паровозов более экономичными и мощными тепловозами, и электровозами. Паровой двигатель достиг своего идеала - и исчез. Его функции взяли на себя ДВС и электромоторы - тоже вначале несовершенные, затем бурно развивающиеся и, наконец, упирающиеся в развитии в свои природные пределы. Затем появится другая новая система - и так бесконечно.

    Закон динамизации

    Надёжность, стабильность и постоянство системы в динамичном окружении зависят от её способности изменяться. Развитие, а значит и жизнеспособность системы, определяется главным показателем: степенью динамизации , то есть способностью быть подвижной, гибкой, приспосабливаемой к внешней среде, меняющей не только свою геометрическую форму, но и форму движения своих частей, в первую очередь рабочего органа. Чем выше степень динамизации, тем, в общем случае, шире диапазон условий, при которых система сохраняет свою функцию. Например, чтобы заставить крыло самолёта эффективно работать в существенно разных режимах полёта (взлёт, крейсерский полёт, полёт на предельной скорости, посадка), его динамизируют путём добавления закрылков, предкрылков, интерцепторов, системы изменения стреловидности и проч.

    Однако, для подсистем закон динамизации может нарушаться - иногда выгоднее искусственно уменьшить степень динамизации подсистемы, тем самым упростив её, а меньшую стойкость/приспособляемость компенсировать созданием стабильной искусственной среды вокруг неё, защищённой от внешних факторов. Но в итоге совокупная система (над-система) всё же получает большую степень динамизации. Например, вместо того, чтобы приспосабливать трансмиссию к загрязнению путём её динамизации (самоочистка, самосмазка, перебалансировка), можно поместить её в герметичный кожух, внутри которого создана среда, наиболее благоприятная для движущихся частей (прецизионные подшипники, масляный туман, подогрев и проч.)

    Другие примеры:

    · В 10-20 раз снижается сопротивление движению плуга, если его лемех вибрирует с определенной частотой в зависимости от свойств грунта.

    · Ковш экскаватора, превратившись в роторное колесо, породил новую высокоэффективную систему добычи полезных ископаемых.

    · Автомобильное колесо из жёсткого деревянного диска с металлическим ободом стало подвижным, мягким и эластичным.

    Закон полноты частей системы

    Любая техническая система, самостоятельно выполняющая какую-либо функцию, имеет четыре основные части - двигатель, трансмиссию, рабочий орган и средство управления. Если в системе отсутствует какая-либо из этих частей, то её функцию выполняет человек или окружающая среда.

    Двигатель - элемент технической системы, являющийся преобразователем энергии, необходимой для выполнения требуемой функции. Источник энергии может находиться либо в системе (например, бензин в баке для двигателя внутреннего сгорания автомобиля), либо в надсистеме (электроэнергия из внешней сети для электродвигателя станка).

    Трансмиссия - элемент, передающий энергию от двигателя к рабочему органу с преобразованием её качественных характеристик (параметров).

    Рабочий орган - элемент, передающий энергию на обрабатываемый объект, и завершающий выполнение требуемой функции.

    Средство управления - элемент, регулирующий поток энергии к частям технической системы и согласующий их работу во времени и пространстве.

    Анализируя любую автономно работающую систему, будь то холодильник, часы, телевизор или авторучка, везде можно видеть эти четыре элемента.

    · Фрезерный станок. Рабочий орган: фреза. Двигатель: электродвигатель станка. Всё что находится между электродвигателем и фрезой можно считать трансмиссией. Средство управления - человек-оператор, рукоятки и кнопки, или программное управление (станок с программным управлением). В последнем случае программное управление «вытеснило» человека-оператора из системы.

    Вопрос 3. Законы развития технических систем. Закон сквозного прохода энергию. Закон опережающего развития рабочего органа. Закон перехода «моно - би - поли». Закон перехода с макро- на микроуровень

    Необходимым условием принципиальной жизнеспособности
    технической системы является наличие и минимальная работоспособность
    основных частей системы.

    Каждая ТС должна включать четыре части: двигатель, трансмиссию, рабочий орган и орган управления.

    Для синтеза ТС необходимо наличие этих четырех частей и их минимальная пригодность к выполнению функций системы. Если хотя бы одна часть отсутствует, то это еще не ТС; если хотя бы одна не работоспособна, то ТС не "выживет".

    Все первые ТС развились из орудий труда: требовалось увеличение полезной функции рабочих процессов, а человек не мог обеспечить нужную мощность. Тогда сила человека заменилась двигателем, появилась трансмиссия (связь, по которой передается энергия от двигателя на рабочий орган) и орудие труда превращалось в рабочий орган машины. А человек выполнял только роль органа управления.


    Например, мотыга и человек это не ТС. Возникновение ТС связано с изобретением плуга в неолите: плуг (рабочий орган) бороздит землю, дышло (трансмиссия) припрягается к скоту (двигателю), а рукоятью плуга управляет человек (орган управления).Сначала плугом только рыхлили. Претензии внешней среды (например, параметры почвы: твердость, влажность, глубина) заставляли искать наилучшую форму плуга. Затем увеличилась потребность: для уничтожения сорняков пласт надо не только рыхлить, но и переворачивать. Изобрели отвал (косо поставленная доска, в которую упирается поднятый лемехом пласт и валится набок). Развиваясь отвал приобретает плавную выгнутую форму (полуцилиндрическую или винтовую). В 18 в. появился цельнометаллический плуг, в 20 в. - трактор и т.д.

    А вот как плуг превратился в сеялку. Римские крестьяне (III в. до н.э.) уже пользовались сеялкой - прообразом многорядной сеялки Джеймса Кука, изобретенной им в 1783 г. Четыре деревянных лемеха соединялись прочной перекладиной. Глиняный воронкообразный горшок для посевного материала крепился вверху на четырех полых бамбуковых палках (трубках). Пахарь время от времени пополнял бункер зерном из наплечного мешка. Приходилось постукивать по бамбуку, чтобы внутри семена не "зависали".


    Римская сеялка (III в. до н.э.), Калькутский музей техники и ремесел.

    Если подробно рассмотреть процесс превращения орудий труда в рабочие органы машин, то можно выделить основные части машин: например, в водяной мельнице - двигатель (водяное колесо), передачу (зацепление) и рабочий орган (жернова). Кроме того, становится заметной одна из главных особенностей развития техники - вытеснение человека из сферы производства. Человек вытесняется из ТС в орган управления, затем ОУ также превращается из инструмента в техническую систему и человек вытесняется за ее пределы (на "второй этаж" органа управления) и т.д.

    В первом издании "Детской энциклопедии" (том 5 "Техника". Издательство академии педагогических наук РСФСР, М., 1960г., с.30) приводится такая характеристика технической системы: "Машина состоит из следующих основных частей:

      а) двигателя - источника механической энергии;

      б) исполнительных (рабочих) органов, непосредственно выполняющих полезную работу;

      в) передаточных механизмов (трансмиссий), преобразующих движение передаваемое от двигателя к рабочим органам;

      г) системы управления;

      д) остова (станины, корпуса, рамы), представляющих собой основание, на котором расположены все части машины".

    Формулировка закона. Необходимым условием принципиальной жизнеспособности технической системы является наличие и минимальная работоспособность основных частей системы .

    По определению, система – совокупность множества элементов. Элементы системы могут быть объединены в несколько функциональных групп:

      Двигатель (Дв) – функциональная группа элементов системы, которая преобразует поступающую от источника энергию в нужную форму (механическую, тепловую, электрическую и т.д.);

    2. Трансмиссия (ТР) – функциональная группа элементов системы, которая передает поток энергии к рабочему органу системы;

    3. Рабочий орган (РО) – функциональная группа элементов непосредственно выполняющая преобразование изделия;

    4. Система управления (СУ) – функциональная группа элементов системы, собирающая необходимую информацию о поведении системы, надсистемы и выполняющая управление на основе полученной информации.

    Источник энергии (ИЭ) может быть объединен с двигателем или находиться в надсистеме, т.е. энергия может поступать извне, в том числе и от человека.

    Полная ТС должна включать четыре части: Дв, ТР, РО, СУ (рис. 15).

    Минимальный состав работоспособной ТС – состав, при наличии которого ТС может без человека выполнять ГПФ. Если хотя бы одна часть отсутствует, то такая ТС называется неполной. Реально существующие системы в большинстве случаев являются не полными.

    Пример. Лук для стрельбы – неполная ТС, так как здесь в наличии имеется лишь РО (стрела), ТР (тетива) и Дв (натянутая тетива и согнутая дуга). Полнота «достраивается» человеком – ИЭ и СУ.

    По определению Ю.П.Саламатова , технический объект становится ТС, когда к РО пристраиваются трансмиссия и двигатель.

    Пример. Лопата – технический объект, так как она имеет штык – РО, черешок – ТР, а функции источника энергии, двигателя и системы управления (ИЭ, Дв, СУ) выполняет человек.

    Применение закона . Для работы с ЗРТС всегда необходимо четко представлять все части системы, чтобы можно было с ними сознательно работать. Кроме того, важно знать, является наша система полной или неполной.

    Наконец, знание состава РО помогает нам правильно записать ГПФ и, наоборот, знание ГПФ помогает более четко выделить элементы РО.

    Таким образом, закон полноты частей системы имеет, в основном, аналитическое значение.

    4.5. Закон вытеснения человека из тс

    Формулировка закона. В процессе развития ТС происходит поэтапное вытеснение из нее человека, то есть техника постепенно берет на себя функции, ранее выполнявшиеся человеком, приближаясь, тем самым, к полной системе .

    Вытеснение человека из ТС фактически означает последовательную передачу машинам трудного для человека физического монотонного труда, переход человека к все более интеллектуальным видам деятельности, то есть отражает общее прогрессивное развитие человечества.

    В полной ТС можно выделить три функциональных уровня:

      Исполнительный (РО, ТР, Дв).

      Управления – исполнительные органы СУ.

      Информационный – информационная часть СУ (датчики, устройства обработки информации).

    Изложим процесс вытеснения человека из ТС.

    Закон полноты частей системы

    Закон полноты частей системы описывает минимально необходимый набор частей, обеспечивающий минимальную работоспособность системы. В общем случае, необходимо наличие следующих частей системы:

      рабочий орган ,

      энергия для обеспечения его работы,

      система управления рабочим органом.

    Идеальном случае рабочий орган энергия . например, инструмент для плазменной обработки. этот частный случай представляет собой одну из тенденций развития техники.

    минимальный набор элементов в средствах транспорта, например, это:

      движитель рабочий орган ,

      двигатель с источником энергии ,

      корпус ,

      система управления .

    В качестве примера рассмотрим некоторые виды указанных частей судна.

    движитель для судов могут быть следующих видов: весло , гребное колесо и гребной винт , водомет , реактивная струя , парус , крыло , воЗдушный Змей , парашют , пропеллер , вращающиеся роторы .

    судовые ветродвижители, где: а - мягкие паруса, б - полужесткие паруса, в - жесткие паруса-крылья, г - авторотирующий пропеллер, д - вращающийся ротор, работа этого ротора основана на эффекте магнуса.

    движители для передачи большой мощности или для быстрых судов . 1 - трехвальная установка; 2 - гребной винт в насадке; 3 - соосные гребные винты противоположного вращения: 4 - водометный движитель

    многие этот эффект наблюдали при исполнении так называемого "крученого мяча" в настольном теннисе или футболе. Суть его в следующем. Цилиндр (или шар) вращается в определенную сторону. Стрелкой показано направление вращения (? - скорость вращения). Цилиндр находится в потоке ветра, показанного стрелкой w . Когда скорости ветра w и вращения цилиндра ? складываются, общая скорость v 2 увеличивается . при увеличении скорости, согласно закону бернулли, давление P 2 в потоке воздуха падает

    с другой стороны (сверху) скорости вычитаются, общая скорость v 1 уменьшается (v 1 lt; v 2 ), и давление P 1 увеличивается. так образуется сила F , направленная перпендикулярно к потоку, которую можно использовать для движения судна.

    Пример 1.

    Как известно эффективность паруса и крыла, прежде всего, определяется их общей площадью, поэтому их делают как можно выше. Однако удлинение парусов и крыльев приводит к уменьшению остойчивости судна. Оригинальное решение этого противоречия - кольцевые и полукольцевые паруса-крылья.

    Аналогичное решение предложено использовать и в авиации. По замыслу авторов, такое крыло в два раза меньше обычного, но из-за особенностей движение воздуха в "трубе" обеспечивают необходимую подъемную силу.

    Пример 2.

    В1924 г. французский инженер константен, воскрешая идею xvIII в., предложил применить ветродвигатели для движения судов. Вращение вала ветродвигателя передается с помощью трансмиссии, содержащей двойную угловую зубчатую передачу и вал, на обычный гребной винт, движущий судно.

    Пример 3.

    Французский корабел м.мар предложил в качестве движителя использовать ветряк (пропеллер).

    Трехлопастной ротор приводит в движение генератор, полученная электроэнергия питает электродвигатель, который вращает гребной винт. Управление ротором проводится с помощью бортового компьютера, который устанавливает ротор против ветра и меняет шаг лопастей.

    Пример 4.

    Возможна комбинация ветродвижителей, например, крыла и пропеллера. На рисунке показано судно с комбинированной ветроэнергетической установкой. Установка состоит жесткого полукольцевого паруса-крыла с высоким аэродинамическим качеством, которое обеспечивается большим удлинением крыла и шайбами на нижних кромках крыльев. Система крыльев имеет механизм установки необходимого угла атаки. внутри контура, охватываемого полукольцевым крылом, по оси симметрии крыла размещен самоориентирующийся по ветру крыльчатый ветродвижитель с горизонтальной осью, для которого жесткий парус служит габаритным ограждением для ветродвигателя во время его вращения.

    При движении боковыми ветрами силу тяги создает жесткое полукрыло, а ветродвигатель застопорен, лопости его установлены горизонтально и развернуты во флюгерное положение. В таком положении ветродвигатель практически не влияет на работу крыла. в случае движения острыми курсовыми углами или прямо против ветра, когда парус не тянет, работает ветродвигатель самоориентируясь по каждому ветру, а полукольцевой жесткий парус устанавливается в плоскости вращения колеса и служит для него аэродинамической насадкой. Мощность от ветродвигателя через трансмиссию передается на гребной винт, вызывая движение судна.

    При попутных ветрах полукольцевой жесткий парус в силу конструктивных условий (угол установки его ограничен) создает малую тягу, поэтому движение судна осуществляется также с помощью ветродвигателя. Реверс производится гребным винтом регулируемого шага (врш).

    Такое судно может успешно двигаться всеми курсами относительно ветра, минуя "мертвые зоны", и более эффективно использовать энергию ветра.

    Судно с комбинированной ветроэнергетической установкой . а - при движении боковым ветром (работает крыло); б - при движении встречным и попутным ветрами (работает ветродвигатель). 1 - полукольцевой жесткий парус; 2 - ветродвигатель; 3 - трансмиссия к гребному винту.

    Пример 5 .

    В англии в качестве движителя использовали воздушный змей. Крупная прямоугольная конструкция обтягивается прочной синтетической пленкой и заполняется гелием. На змее установлена метеорологическая аппаратура, которая передает информацию на судно. Змеем можно управлять с помощью перетекания газа во внутренних отсеках.

    Подобное решение, но более простое в осуществлении предлагает английский изобретатель К.Стюарт. Он разработал надувной пластиковый "воздушный змей", который наполняется гелием и запускается с палубы судна. По сути, это тот же парус, но без мачты. преимущество его в том, что этот "парус" может использовать потоки на высоте даже тогда, когда над морской гладью царит безветрие. Изобретатель приспособил свой движитель к небольшой яхте и несколько раз переплыл на ней ла-манш. Автор утверждает, что без принципиальных изменений его парус можно применить на судах водоизмещением до 150 тонн.


    Пример 6.

    Роторные суда, изобретены немецким авиационным инженером и изобретателем антоном флетнером. работа движителя а.Флетнераоснована на эффекте магнуса.Роторные суда имеют от одного до трех вертикальных цилиндров-роторов, вращаемых вспомогательным двигателем.

    Пример 7 .

    Из всех районов земли наиболее полно энергию ветра можно использовать в южном океане, ограниченном австралией, африкой, южной америкой и антарктидой.Проекте "аврора" парус - это парашют длиной 450 м и диаметром чуть меньше 1 км, связанный с забалластированным поплавком и движущийся на высоте 170-300 м над уровнем воды.Высота над уровнем океана, даже при отсутствии ветра, поддерживается гелием или водородом, заполняющим специальные камеры парусов.


    двигатель

    В качестве двигателей в судах используют: дизель, турбина, атомный реактор и значительно реже - ветер и электродвигатель. Раньше использовали паровой двигатель. Наиболее часто встречающиеся в настоящее время двигатели показаны на рисунке .

    судовые энергетические установки. 1 - низкооборотный дизель, непосредственно работающий на гребной винт; 2 - дизль-редукторная установка 3 - паротурбинная установка; 4 - газвая турбина; 5 - атомная установка; 6 - газтурбинная установка с электрической передачей на винт.

    Корпус

    корпуса могут отличаться по их количеству , виду и материалу , изкоторого они сделаны.

      количество корпусов 1 корпус, 2 корпуса – катамаран, 3 корпуса – тримаран , 4 и более корпусов – полимаран .

      материал корпуса : папирус , тростник, дерево , металл , пластмасса , стеклоткань и т.д.

    южноамериканская тростниковая лодка

      вид корпуса : плот, водоизмещающий корпус , полупогруженный корпус , с подводными крыльями, на воздушной подушке , экраноплан, подводное судно .

    плот

    водоизмещающий корпус

    с подводными крыльями

    экраноплан

    Система управления

    Системы управления могут быть: непосредственные, дистанционные; ручные, механические, полуавтоматические, автоматические.

    Пример 8.

    В втомобиле человек непосредственно управляет машиной– это непосредственная система управления. Луноходом управляли с Земли– это дистанционное управление.

    Когда-то автомобилем управляли в ручную, далее стали использвать усилитель руля – это механическое управление. На следующем этапе на отдельных не сложных этапах дороги можно было поручить управление полуавтомату. Сегодня существует автомобиль который полностью управляется автоматически.

    В технике есть хороший метод, который позволяет «по науке» изобретать и улучшать предметы от колеса до компьютера и самолета. Называется он ТРИЗ (теория решения изобретательских задач). ТРИЗ я немного изучал в МИФИ, а потом посещал курсы Александра Кудрявцева в Бауманке.

    Пример в производстве

    Начальное состояние системы. Предприятие работает как опытно-конструкторское производство.

    Фактор воздействия. На рынке появились конкуренты, которые делают аналогичную продукцию, но быстрее и дешевле при том же качестве.

    Кризис (Противоречие). Чтобы делать быстрее и дешевле, необходимо выпускать максимально стандартизованную продукцию. Но, выпуская только стандартизованную продукцию, предприятие теряет рынок, так как может производить лишь небольшое число стандартных позиций.

    Разрешение кризиса происходит по следующему сценарию:

    Правильная формулировка идеального конечного результата (ИКР) – предприятия производит бесконечно большой ассортимент продукции с нулевыми затратами и мгновенно;

    область конфликта : стыковка продаж и производства: для продаж должен быть максимальный ассортимент, для производства — один вид продукции;

    способы разрешения конфликта: переход от макро- к микроуровню: на макроуровне — бесконечное разнообразие, на микроуровне – стандартизация;

    решение : максимальная стандартизация и упрощение в производстве — несколько стандартных модулей, которые могут собираться в большом числе комбинаций для клиента. В идеале конфигурирование клиент делает сам для себя, например через сайт.

    Новое состояние системы. Производство небольшого числа стандартизованных модулей и конфигурирование под заказ самим же клиентом. Примеры: Тойота, Икея, Лего.

    Закон №7 перехода в надсистему (моно-би-поли)

    исчерпав возможности развития, система включается в надсистему в качестве одной из частей; при этом дальнейшее развитие идет уже на уровне надсистемы.

    Телефон с функцией звонка — > Телефонс функцией звонка и смс -> Телефон как чать экосистемы подключенной к AppStore (iphone)

    Еще пример, вхождение предприятия в цепочку поставок или холдинг и развитие на новом уровне.

    одна компания — две компании — управляющая компания.

    один модуль — два модуля — ERP система

    Закон №8 перехода с макроуровня на микроуровень

    развитие частей системы идет сначала на макро, а затем на микроуровне.

    Телефон->Сотовый телефон->Чип в мозгу или в контактных линзах.

    Сначала ищется общее ценностное предложение и делаются продажи, а после оптимизируется «воронка продаж» и каждый шаг воронки продаж, а так же микродвижения и клики пользоватеелй.

    На заводах начинают с синхронизации между цехами. Когда этот ресурс оптимизации исчерпан, производится внутрицеховая оптимизация, далее переход на каждое рабочее место, вплоть до микродвижений операторов.

    Закон №9 перехода к более управляемым ресурсам

    Развитие систем идет в направлении управления все более сложными и динамичными подсистемами.

    Есть знаменитая фраза Марка Андрессена — «Software is Eating the World» (софт съедает планету). Сначала управление компьютерами осуществлялось на уровне «железа» (hardware) — электронные реле, транзисторы и т.п. Далее появились низкоуровневые языки программирования типа Assembler, далее языки более высоких уровней — Fortran, C, Python. Управление не на уровне отдельных команд, а на уровне классов, модулей и библиотек. Начала оцифровываться музыка и книги. Позже компьютеры подключились в сеть. Далее к сети подключились люди, телевизоры, холодильники, микроволновки, телефоны. Начал оцифровываться интеллект, живые клетки.

    Закон №10 законы самосборки

    Уход от систем которые нужно детально создавать, продумывать и контролировать. Переход к «самособирающимся» системам

    4 правиласамосборки:

    1. Внешний непрерывный источник энергии (информации, денег, людей, спрос)
    2. Примерное подобие элементов (блоков информации, типов людей)
    3. Наличие потенциала притяжения (людей тянет общаться друг с другом)
    4. Наличие внешнего перетряхивания (создание кризисов, прекращение финансирования, смена правил)

    По такой схеме из ДНК происходит самосборка клеток. Мы все — результаты самосборки.Стартапы вырастают в крупные компании так же по законам самосборки.

    Небольшие и понятные правила на микроуровне выливаются в сложное организованное поведение на макроуровне. Например, правила дорожного движения для каждого водителя выливаются в организованный поток на трассе.

    Простые правила поведения муравьев выливаются в сложное поведение всего муравейника.

    Создание каких-то простых законов на уровне государства (повышение/понижение налогов, % по кредитам, санкции и т.п.), меняет конфигурацию многих компаний и отраслей

    Закон №11 повышение свернутости системы

    Функции, которыми никто не пользуется — отмирают. Функции объединяются

    Правило свертки 1. Элемент может быть свернут, если нет объекта выполняемой им функции. Стартап может быть закрыт, если не найден клиент или ценностное предложение.По этой же причине по достижению цели — система распадается.

    Правило свертки 2. Элемент может быть свернут, если объект функции сам выполняет эту функцию. Агентства по туризму могут быть закрыты, так как клиенты сами ищут туры, бронируют билеты, покупают путевки и т.п.

    Правило свертки 3. Элемент может быть свернут, если функцию выполняют оставшиеся элементы системы или надсистемы.

    Закон №12 закон вытеснения человека

    Со временем человек становится лишним звеном в любой развитой системе. Человека нет, а функции выполняются. Роботизация ручных операций. Вендинговые автоматы самовыдачи товаров и др.

    С этой точки зрения, возможно зря Элон Маск пытается заселить Марс людьми путем физической транспортировки. Это долго и дорого. Скорее всего колонизация будет происходить информационным путем.