Войти
Автомобильный портал - Двигатель. Замена свечей. Подсветка. Права и вождение
  • Компот из айвы: несколько самых вкусных рецептов Компот из айвы на зиму
  • Десерт из клубники и творога
  • Очень вкусный домашний торт с вишней и взбитыми сливками
  • Шампиньоны тушеные в сметане
  • Необычный салат оливье по-итальянски с яблоками и оливками Оливье с яблоком рецепт
  • Перловка с кукурузой и морковью
  • Исходные данные для расчета редуктора. Расчет и выбор (Российская методика) – редуктор червячный

    Исходные данные для расчета редуктора. Расчет и выбор (Российская методика) – редуктор червячный

    Любое подвижное соединение, передающее усилие и меняющее направление движения, имеет свои технические характеристики. Основным критерием, определяющим изменение угловой скорости и направления движения, является передаточное число. С ним неразрывно связано изменение силы – . Оно вычисляется для каждой передачи: ременной, цепной, зубчатой при проектировании механизмов и машин.

    Перед тем как узнать передаточное число, надо посчитать количество зубьев на шестернях. Затем разделить их количество на ведомом колесе на аналогичный показатель ведущей шестерни. Число больше 1 означает повышающую передачу, увеличивающую количество оборотов, скорость. Если меньше 1, то передача понижающая, увеличивающая мощность, силу воздействия.

    Общее определение

    Наглядный пример изменения числа оборотов проще всего наблюдать на простом велосипеде. Человек медленно крутит педали. Колесо вращается значительно быстрее. Изменение количества оборотов происходит за счет 2 звездочек, соединенных в цепь. Когда большая, вращающаяся вместе с педалями, делает один оборот, маленькая, стоящая на задней ступице, прокручивается несколько раз.

    Передачи с крутящим моментом

    В механизмах используют несколько видов передач, изменяющих крутящий момент. Они имеют свои особенности, положительные качества и недостатки. Наиболее распространенные передачи:

    • ременная;
    • цепная;
    • зубчатая.

    Ременная передача самая простая в исполнении. Используется при создании самодельных станков, в станочном оборудование для изменения скорости вращения рабочего узла, в автомобилях.

    Ремень натягивается между 2 шкивами и передает вращение от ведущего в ведомому. Производительность низкая, поскольку ремень скользит по гладкой поверхности. Благодаря этому, ременной узел является самым безопасным способом передавать вращение. При перегрузке происходит проскальзывание ремня, и остановка ведомого вала.

    Передаваемое количество оборотов зависит от диаметра шкивов и коэффициента сцепления. Направление вращения не меняется.

    Переходной конструкцией является ременная зубчатая передача.

    На ремне имеются выступы, на шестерне зубчики. Такой тип ремня расположен под капотом автомобиля и связывает звездочки на осях коленвала и карбюратора. При перегрузе ремень рвется, так как это самая дешевая деталь узла.

    Цепная состоит из звездочек и цепи с роликами. Передающееся число оборотов, усилие и направление вращения не меняются. Цепные передачи широко применяются в транспортных механизмах, на конвейерах.

    Характеристика зубчатой передачи

    В зубчатой передаче ведущая и ведомая детали взаимодействуют непосредственно, за счет зацепления зубьев. Основное правило работы такого узла – модули должны быть одинаковыми. В противном случае механизм заклинит. Отсюда следует, что диаметры увеличиваются в прямой зависимости от количества зубьев. Одни значения можно в расчетах заменить другими.

    Модуль – размер между одинаковыми точками двух соседних зубьев.

    Например, между осями или точками на эвольвенте по средней линии Размер модуля состоит из ширины зуба и промежутка между ними. Измерять модуль лучше в точке пересечения линии основания и оси зубца. Чем меньше радиус, тем сильнее искажается промежуток между зубьями по наружному диаметру, он увеличивается к вершине от номинального размера. Идеальные формы эвольвенты практически могут быть только на рейке. Теоретически на колесе с максимально бесконечным радиусом.

    Деталь с меньшим количеством зубьев называют шестерней. Обычно она ведущая, передает крутящий момент от двигателя.

    Зубчатое колесо имеет больший диаметр и в паре ведомое. Оно соединено с рабочим узлом. Например, передает вращение с необходимой скоростью на колеса автомобиля, шпиндель станка.

    Обычно посредством зубчатой передачи уменьшается количество оборотов и увеличивается мощность. Если в паре деталь, имеющая больший диаметр, ведущая, на выходе шестерня имеет большее количество оборотов, вращается быстрее, но мощность механизма падает. Такие передачи называют понижающими.

    При взаимодействии шестерни и колеса происходит изменение сразу нескольких величин:

    • количества оборотов;
    • мощности;
    • направление вращения.

    Зубчатое зацепление может иметь различную форму зуба на деталях. Это зависит от исходной нагрузки и расположения осей сопрягаемых деталей. Различают виды зубчатых подвижных соединений:

    • прямозубая;
    • косозубая;
    • шевронная;
    • коническая;
    • винтовая;
    • червячная.

    Самое распространенное и простое в исполнении прямозубое зацепление. Наружная поверхность зуба цилиндрическая. Расположение осей шестерни и колеса параллельное. Зуб расположен под прямым углом к торцу детали.

    Когда нет возможности увеличить ширину колеса, а надо передать большое усилие, зуб нарезают под углом и за счет этого увеличивают площадь соприкосновения. Расчет передаточного числа при этом не изменяется. Узел становится более компактным и мощным.

    Недостаток косозубых зацеплений в дополнительной нагрузки на подшипники. Сила от давления ведущей детали действует перпендикулярно плоскости контакта. Кроме радиального, появляется осевое усилие.

    Компенсировать напряжение вдоль оси и еще больше увеличить мощность позволяет шевронное соединение. Колесо и шестерня имеют 2 ряда косых зубьев, направленных в разные стороны. Передающее число рассчитывается аналогично прямозубому зацеплению по соотношению количества зубьев и диаметров. Шевронное зацепление сложное в исполнении. Оно ставится только на механизмах с очень большой нагрузкой.

    В многоступенчатом редукторе все зубчатые детали, находящиеся между ведущей шестерней на входе в редуктор и ведомым зубчатым венцом на выходном валу, называются промежуточными. Каждая отдельная пара имеет свое передающееся число, шестерню и колесо.

    Редуктор и коробка скоростей

    Любая коробка скоростей с зубчатым зацеплением является редуктором, но обратное утверждение неверно.

    Коробка скоростей представляет собой редуктор с подвижным валом, на котором расположены шестерни разного размера. Смещаясь вдоль оси, он включает в работу то одну, то другую пару деталей. Изменение происходит за счет поочередного соединения различных шестерен и колес. Они отличаются диаметром и передающимся количеством оборотов. Это дает возможность изменять не только скорость, но и мощность.

    Трансмиссия автомобиля

    В машине поступательное движение поршня преобразуется во вращательное коленвала. Трансмиссия представляет собой сложный механизм с большим количеством различных узлов, взаимодействующих между собой. Ее назначение — передать вращение от двигателя на колеса и регулировка количества оборотов – скорости и мощности автомобиля.

    В состав трансмиссии входит несколько редукторов. Это, прежде всего:

    • коробка передач – скоростей;
    • дифференциал.

    Коробка передач в кинематической схеме стоит сразу за коленвалом, изменяет скорость и направление вращения.

    Дифференциал представляет собой с двумя выходными валами, расположенными в одной оси напротив друг друга. Они смотрят в разные стороны. Передаточное число редуктора – дифференциала небольшое, в пределах 2 единиц. Он меняет положение оси вращения и направление. Благодаря расположению конических зубчатых колес напротив друг друга, при зацеплении с одной шестерней они крутятся в одном направлении относительно положения оси автомобиля, и передают вращательный момент непосредственно на колеса. Дифференциал изменяет скорость и направление вращения ведомых коничек, а за ними и колес.

    Как рассчитать передаточное число

    Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

    Расчет без учета сопротивления

    В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

    u 12 = ± Z 2 /Z 1 и u 21 = ± Z 1 /Z 2 ,

    Где u 12 – передаточное число шестерни и колеса;

    Z 2 и Z 1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

    Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.

    Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:

    u 16 = u 12 ×u 23 ×u 45 ×u 56 = z 2 /z 1 ×z 3 /z 2 ×z 5 /z 4 ×z 6 /z 5 = z 3 /z 1 ×z 6 /z 4

    Способ расчета передаточного числа позволяет спроектировать редуктор с заранее заданными выходными значениями количества оборотов и теоретически найти передаточное отношение.

    Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.

    КПД зубчатой передачи

    Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:

    • трение соприкасаемых поверхностей;
    • изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
    • потери на шпонках и шлицах;
    • трение в подшипниках.

    Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.

    Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.

    При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.

    Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.

    Передаточное отношение зубчатой передачи

    Значение передаточного числа зубчатой передачи совпадает передаточным отношением. Величина угловой скорости и момента силы изменяется пропорционально диаметру, и соответственно количеству зубьев, но имеет обратное значение.

    Чем больше количество зубьев, тем меньше угловая скорость и сила воздействия – мощность.

    При схематическом изображении величины силы и перемещения шестерню и колесо можно представить в виде рычага с опорой в точке контакта зубьев и сторонами, равными диаметрам сопрягаемых деталей. При смещении на 1 зубец их крайние точки проходят одинаковое расстояние. Но угол поворота и крутящий момент на каждой детали разный.

    Например, шестерня с 10 зубьями проворачивается на 36°. Одновременно с ней деталь с 30 зубцами смещается на 12°. Угловая скорость детали с меньшим диаметром значительно больше, в 3 раза. Одновременно и путь, который проходит точка на наружном диаметре имеет обратно пропорциональное отношение. На шестерне перемещение наружного диаметра меньше. Момент силы увеличивается обратно пропорционально соотношению перемещения.

    Крутящий момент увеличивается вместе с радиусом детали. Он прямо пропорционален размеру плеча воздействия – длине воображаемого рычага.

    Передаточное отношение показывает, насколько изменился момент силы при передаче его через зубчатое зацепление. Цифровое значение совпадает с переданным числом оборотов.

    Передаточное отношение редуктора вычисляется по формуле:

    U 12 = ±ω 1 /ω 2 =±n 1 /n 2

    где U 12 – передаточное отношение шестерни относительно колеса;



    Имеет самый высокий КПД и наименьшую защиту от перегруза – ломается элемент приложения силы, приходится делать новую дорогостоящую деталь со сложной технологией изготовления.

    Существуют 3 основных вида мотор-редукторов - это планетарные, червячные и цилиндрические мотор-редукторы. Для увеличения крутящего момента и еще большего уменьшения величины оборотов на выходе мотор-редуктора существуют и различные комбинации вышеуказанных типов мотр-редукторов. Предлагаем Вам воспользоваться калькуляторами для приблизительного расчета мощности мотор-редуктора механизмов ПОДЪЁМА груза и механизмов ПЕРЕМЕЩЕНИЯ груза.

    Для механизмов подъема груза.

    1. Определяем требуемые обороты на выходе мотор-редуктора исходя из известной скорости подъема

    V= π*2R*n, где

    R- радиус подъмного барабана, м

    V-скорость подъема, м*мин

    n- обороты на выходе мотор-редуктора, об/мин

    2.определяем угловую скорость вращения вала мотор-редуктора

    3. определяем требуемое усилие для поднятия груза

    m- масса груза,

    g- ускорение свободного падения(9,8м*мин)

    t- коэффициент трения (где то 0,4)

    4. Определяем крутящий момент

    5. расчитываем мощность электродвигателя

    Исходя из расчета выбираем требуемый мотор-редуктор из технических характеристик на нашем сайте.

    Для механизмов перемещения груза

    Все то же самое, кроме формулы вычисления усилия

    а- ускорение груза (м*мин)

    Т — время за которое груз проходит путь по, например, конвейеру

    Для механизмов подъема груза лучше применять Мотор-редукторы МЧ, МРЧ , так как в них исключена возможность прокручивания выходного вала при приложении к нему усилия, что избавляем от необходимости устанавливать на механизм колодочный тормоз.

    Для механизмов перемешивания смесей или бурения рекомендуем Мотор-редукторы планетарные 3Мп, 4МП так как они испытывают равномерную радиальную нагрузку.

    1. Выбор электродвигателя

    Кинематическая схема редуктора:

    1. Двигатель;

    2. Редуктор;

    3. Вал приводной;

    4. Муфта предохранительная;

    5. Муфта упругая.

    Z 1 - червяк

    Z 2 - червячное колесо

    Определение мощности привода:

    В первую очередь выбираем электродвигатель, для этого определяем мощность и частоту вращения.

    Потребляемую мощность (Вт) привода (мощность на выходе) определяют по формуле:

    передача электродвигатель приводной

    Где Ft - окружная сила на барабане ленточного конвеера или звездочке пластинчатого конвейера (Н);

    V - скорость движения цепи или ленты (м/с).

    Мощность электродвигателя:

    Где з общ - общий КПД привода.

    з общ =з м?з ч.п з м з пп;

    где з ч.п - КПД червячной передачи;

    з м - КПД муфты;

    з п3 ?КПД подшипников 3-го вала

    з общ =0,98 0,8 0,98 0,99 = 0,76

    Определяю мощность электродвигателя:

    2. Определение частоты вращения приводного вала

    диаметр барабана, мм.

    По таблице (24.8) выбираем электродвигатель марки «аир132м8»

    с частотой вращения

    с мощность

    крутящим моментом т мах /т=2,

    3. Определение общего передаточного числа и разбивка его по ступеням

    Выбираем из стандартного ряда

    Принимаем

    Проверка: подходит

    4. Определение мощности, частоты вращения и крутящего момента для каждого вала

    5. Определение допускаемых напряжений

    Определяю скорость скольжения:

    (Из параграфа 2.2 расчет передач) принимаем V s >=2…5 м/с II безоловянные бронзы и латуни, принимаемые при скорости

    Суммарное время работы:

    Суммарное число циклов перемены напряжений:

    Червяк. Сталь 18 ХГТ цементированная и закаленная до НRC (56…63). Витки шлифованные и полированные. Профиль ZK.

    Червячное колесо. Размеры червячной пары зависят от значения допускаемого напряжения [у] H для материала червячного колеса.

    Допускаемые напряжения для расчета на прочность рабочих поверхностей:

    Материал 2 группы. Бронза Бр АЖ 9-4. Отливка в землю

    у в = 400 (МПа); у т = 200 (МПа);

    Т.к. для изготовления зубчатого венца подходят оба материала, то выбираем более дешевый, а именно Бр АЖ 9-4.

    Принимаю червяк с числом заходов Z 1 = 1, и червячное колесо с числом зубьев Z 2 = 38.

    Определяю исходные допускаемые напряжения для расчёта зубьев червячного колеса на прочность рабочих поверхностей, предел изгибной выносливости материала зубьев и коэффициент безопасности:

    у F о = 0,44?у т +0,14?у в = 0,44 200+0,14 400 = 144 (МПа);

    S F = 1,75; К FE =0,1;

    N FE = К FE N ? =0,1 34200000=3420000

    Определяю максимальные допускаемые напряжения:

    [у] F max = 0,8?у т = 0,8 200 = 160 (МПа).

    6. Коэффициенты нагрузки

    Определяю ориентировочное значение коэффициента нагрузки:

    k I = k v I k в I ;

    k в I = 0,5 (k в о +1) = 0,5 (1,1+1)=1,05;

    k I = 1 1,05 = 1,05.

    7. Определение расчётных параметров червячной передачи

    Предварительное значение межосевого расстояния:

    При постоянном коэффициенте нагрузки K Я =1,0 К hg =1;

    Т не =К нg ЧT 2 ;

    K Я =0,5 (K 0 Я +1)=0,5 (1,05+1)=1,025;

    Безоловянные бронзы (материал II)

    При К he при решение нагружения I равен 0,8

    Принимаю а" w = 160 (мм).

    Определяю осевой модуль:

    Принимаю модуль m = 6,3 (мм).

    Коэффициент диаметра червяка:

    Принимаю q = 12,5.

    Коэффициент смещения червяка:

    Определяю углы подъёма витка червяка.

    Делительный угол подъёма витка:

    8. Проверочный расчёт червячной передачи на прочность

    Коэффициент концентрации нагрузки:

    где И - коэффициент деформации червяка;

    Х - коэффициент, учитывающий влияние режима работы передачи на приработку зубьев червячного колеса и витков червяка.

    для 5-го режима нагружения.

    Коэффициент нагрузки:

    k = k v k в = 1 1,007 = 1,007.

    Скорость скольжения в зацеплении:

    Допускаемое напряжение:

    Расчётное напряжение:


    200,08 (МПа) < 223,6 (МПа).

    Расчётное напряжение на рабочих поверхностях зубьев не превышает допускаемого, следовательно, ранее установленные параметры можно принять за окончательные.

    Коэффициент полезного действия:

    Уточняю значение мощности на валу червяка:

    Определяю силы в зацеплении червячной пары.

    Окружная сила на колесе и осевая сила на червяке:

    Окружная сила на червяке и осевая сила на колесе:

    Радиальная сила:

    F r = F t2 tgб = 6584 tg20 = 2396 (Н).

    Напряжение изгиба в зубьях червячного колеса:

    где У F = 1,45 - коэффициент, учитывающий форму зубьев червячных колёс.

    18,85 (МПа) < 71,75 (МПа).

    Проверка передачи на кратковременную пиковую нагрузку.

    Пиковый момент на валу червячного колеса:

    Пиковое контактное напряжение на рабочих поверхностях зубьев:

    316,13 (МПа) < 400 (МПа).

    Пиковое напряжение изгиба зубьев червячного колеса:

    Проверка редуктора на нагрев.

    Температура нагрева, установленного на металлической раме редуктора при естественном охлаждении:

    где t o - температура окружающего воздуха (20 о С);

    к т - коэффициент теплоотдачи, к т = 10;

    А - площадь поверхности охлаждения корпуса редуктора (м 2);

    А = 20 а 1,7 = 20 0,16 1,7 =0,88 (м 2).

    56,6 (о С) < 90 (о С) = [t] раб

    Так как температура нагрева редуктора при естественном охлаждении не превышает допустимую, то искусственного охлаждения на редуктор не требуется.

    9. Определение геометрических размеров червячной передачи

    Делительный диаметр:

    d 1 = m q = 6,3 12,5 = 78,75 (мм).

    Начальный диаметр:

    d w1 = m (q+2x) =6,3 (12,5+2*0,15) = 80,64 (мм).

    Диаметр вершин витков:

    d a1 = d 1 +2m = 78,75+2 6,3 = 91,35=91 (мм).

    Диаметр впадин витков:

    d f1 = d 1 -2h* f m = 78,75-2 1,2 6,3 = 63,63 (мм).

    Длина нарезной части червяка:

    в = (11+0,06 z 2) m+3 m = (11+0,06 38) 6,3+3 6,3 = 102,56 (мм).

    Принимаем в = 120 (мм).

    Червячное колесо.

    Делительный и начальный диаметр:

    d 2 = d w2 = z 2 m = 38 6,3 = 239,4 (мм).

    Диаметр вершин зубьев:

    d a2 = d 2 +2 (1+x) m = 239,4+2 (1+0,15) 6,3 = 253,89= 254 (мм).

    Диаметр впадин зубьев:

    d f2 = d 2 - (h* f +x) 2m = 239,4 - (1,2+0,15) 26,3 = 222,39 (мм).

    Ширина венца

    в 2 ? 0,75 d a1 = 0,75 91 = 68,25 (мм).

    Принимаем в 2 =65 (мм).

    10. Определение диаметров валов

    1) Диаметр быстроходного вала принимаем

    Принимаем d=28 мм

    Размер фасок вала.

    Диаметр посадочной поверхности подшипника:

    Принимаем

    Принимаем

    2) Диаметр тихоходного вала:

    Принимаем d=45 мм

    Для найденного диаметра вала выбираем значения:

    Приблизительная высота буртика,

    Максимальный радиус фаски подшипника,

    Размер фасок вала.

    Определим диаметр посадочной поверхности подшипника:

    Принимаем

    Диаметр буртика для упора подшипника:

    Принимаем: .

    10. Выбор и проверка подшипников качения по динамической грузоподъёмности

    1. Для быстроходного вала редуктора выберем шариковые радиально-упорные однорядные подшипники средней серии 36307.

    Для него имеем:

    Диаметр внутреннего кольца,

    Диаметр наружного кольца,

    Ширина подшипника,

    На подшипник действуют:

    Осевая сила,

    Радиальная сила.

    Частота вращения:.

    Требуемый ресурс работы:.

    Коэффициент безопасности

    Температурный коэффициент

    Коэффициент вращения

    Проверим условие:

    2. Для тихоходного вала редуктора выберем шариковые радиально-упорные однорядные подшипники легкой серии.

    Для него имеем:

    Диаметр внутреннего кольца,

    Диаметр наружного кольца,

    Ширина подшипника,

    Динамическая грузоподъёмность,

    Статическая грузоподъёмность,

    Предельная частота вращения при пластичной смазке.

    На подшипник действуют:

    Осевая сила,

    Радиальная сила.

    Частота вращения:.

    Требуемый ресурс работы:.

    Коэффициент безопасности

    Температурный коэффициент

    Коэффициент вращения

    Коэффициент осевого нагружения:.

    Проверим условие:

    Определяем значение коэффициента радиальной динамической нагрузки x=0.45 и коэффициента осевой динамической нагрузки y=1,07.

    Определяем эквивалентную радиальную динамическую нагрузку:

    Рассчитаем ресурс принятого подшипника:

    Что удовлетворяет требованиям.

    12. Расчет приводного вала (наиболее нагруженного) вала на усталостную прочность и выносливость

    Действующие нагрузки:

    Радиальная сила

    Крутящий момент -

    Момент на барабане

    Определим реакции опор в вертикальной плоскости.

    Выполним проверку: ,

    Следовательно вертикальные реакции найдены верно.

    Определим реакции опор в горизонтальной плоскости.

    получаем, что.

    Проверим правильность нахождения горизонтальных реакций: , - верно.

    Моменты в опасном сечении будут равны:

    Расчёт производим в форме проверки коэффициента запаса прочности, значение которого можно принять. При этом должно выполняться условие, что, где - расчётный коэффициент запаса прочности, и - коэффициенты запаса по нормальным и касательным напряжениям, которые определим ниже.

    Найдём результирующий изгибающий момент, как.

    Определим механические характеристики материала вала (Сталь 45): - временное сопротивление (предел прочности при растяжении); и - пределы выносливости гладких образцов при симметричном цикле изгиба и кручении; - коэффициент чувствительности материала к асимметрии цикла напряжений.

    Определим отношение следующих величин:

    где и - эффективные коэффициенты концентрации напряжений, - коэффициент влияния абсолютных размеров поперечного сечения. Найдём значение коэффициента влияния шероховатости и коэффициент влияния поверхностного упрочнения.

    Вычислим значения коэффициентов концентрации напряжений и для данного сечения вала:

    Определим пределы выносливости вала в рассматриваемом сечении:

    Рассчитаем осевой и полярный моменты сопротивления сечения вала:

    где - расчётный диаметр вала.

    Вычислим изгибное и касательное напряжение в опасном сечении по формулам:

    Определим коэффициент запаса прочности по нормальным напряжениям:

    Для нахождения коэффициента запаса прочности по касательным напряжениям определим следующие величины. Коэффициент влияния асимметрии цикла напряжений для данного сечения. Среднее напряжение цикла. Вычислим коэффициент запаса

    Найдём расчётное значение коэффициента запаса прочности и сравним его с допускаемым: - условие выполняется.

    13. Расчет шпоночных соединений

    Расчёт шпоночных соединений заключается в проверке условия прочности материала шпонки на смятие.

    1. Шпонка на тихоходном валу для колеса.

    Принимаем шпонку 16х10х50

    Условие прочности:

    1. Шпонка на тихоходном валу для муфты.

    Крутящий момент на валу, - диаметр вала,- ширина шпонки, - высота шпонки, - глубина паза вала, - глубина паза ступицы, - допускаемое напряжение на смятие, - предел текучести.

    Определяем рабочую длину шпонки:

    Принимаем шпонку 12х8х45

    Условие прочности:

    14. Выбор муфт

    Для передачи крутящего момента от вала электродвигателя к быстроходному валу и предотвращения перекоса вала выбираем муфту.

    Для привода ленточного конвейера наиболее подходит муфта упругая с торообразной оболочкой по ГОСТ 20884-82.

    Муфта выбирается в зависимости от крутящего момента на тихоходном валу редуктора.

    Муфты с торообразной оболочкой обладают большой крутильной, радиальной и угловой податливостью. Полумуфты устанавливают как на цилиндрические, так и на конические концы валов.

    Допустимые для данного вида муфт значения смещений каждого вида (при условии, что смещения других видов близки к нулю): осевое мм, радиальное мм, угловое. Нагрузки, действующие на валы, могут быть определены по графикам из литературы .

    15. Смазка червячной передачи и подшипников

    Для смазывания передачи применена картерная система.

    Определим окружную скорость вершин зубьев колеса:

    Для тихоходной ступени, здесь - частота вращения червячного колеса, - диаметр окружности вершин червячного колеса

    Рассчитаем предельно допустимый уровень погружения зубчатого колеса тихоходной ступени редуктора в масляную ванну: , здесь - диаметр окружностей вершин зубьев колеса быстроходной ступени.

    Определим необходимый объём масла по формуле: , где - высота области заполнения маслом, и - соответственно длина и ширина масляной ванны.

    Выберем марку масла И-Т-С-320 (ГОСТ 20799-88).

    И - индустриальное,

    Т - тяжелонагруженные узлы,

    С - масло с антиокислителями, антикоррозионными и противоизносными присадками.

    Смазывание подшипников происходит тем же маслом за счёт разбрызгивания. При сборке редуктора подшипники необходимо предварительно промаслить.

    Список используемой литературы

    1. П.Ф. Дунаев, О.П. Леликов, «Конструирование узлов и деталей машин», Москва, «Высшая школа», 1985 год.

    2. Д.Н. Решетов, «Детали машин», Москва, «Машиностроение», 1989 год.

    3. Р.И. Гжиров, «Краткий справочник конструктора», «Машиностроение», Ленинград, 1983 год.

    4. Атлас конструкций «Детали машин», Москва, «Машиностроение», 1980 год.

    5. Л.Я. Перель, А.А. Филатов, справочник «Подшипники качения», Москва, «Машиностроение», 1992 год.

    6. А.В. Буланже, Н.В. Палочкина, Л.Д. Часовников, методические указания по расчёту зубчатых передач редукторов и коробок скоростей по курсу «Детали машин», часть 1, Москва, МГТУ им. Н.Э. Баумана, 1980 год.

    7. В.Н. Иванов, В.С. Баринова, «Выбор и расчёты подшипников качения», методические указания по курсовому проектированию, Москва, МГТУ им. Н.Э. Баумана, 1981 год.

    8. Е.А. Витушкина, В.И. Стрелов. Расчёт валов редукторов. МГТУ им. Н.Э. Баумана, 2005 год.

    9. Атлас «конструкций узлов и деталей машин», Москва, издательство МГТУ им. Н.Э. Баумана, 2007 год.

    – задача не из простых. Один неправильный шаг при расчете чреват не только преждевременным выходом из строя оборудования, но и финансовыми потерями (особенно если редуктор стоит на производстве). Поэтому расчет мотор-редуктора чаще всего доверяют специалисту. Но что делать, когда такого специалиста у вас нет?

    Для чего необходим мотор-редуктор?

    Мотор-редуктор – приводной механизм, который представляет собой комбинацию из редуктора и электродвигателя. При этом двигатель крепится на редуктор на прямую без специальных муфт для соединения. За счет высокого уровня КПД, компактных размеров и простоты обслуживания такой тип оборудования применяют практически во всех областях промышленности. Мотор-редукторы нашли применения практически во всех производственных отраслях:

    Как подобрать мотор редуктор?

    Если стоит задача подбора мотор-редуктора, чаще всего все сводится к выбору двигателя необходимой мощности и количеству оборотов на выходном валу. Однако есть и другие немаловажные характеристики, которые важно учитывать при выборе мотор-редуктора:

    1. Тип мотор-редуктора

    Понимание типа мотор-редуктора может значительно упростить его выбор. По типу передачи различают: , планетарные, конические и соосно-цилиндрические мотор-редукторы. Все они различаются расположением валов.

    1. Обороты на выходе

    Скорость вращения механизма, к которому крепится мотор-редуктор определяется количеством оборотов на выходе. Чем выше этот показатель, тем больше будет амплитуда вращения. К примеру, если мотор-редуктор является приводом конвейерной ленты, то скорость ее передвижения будет зависеть от показателя оборотов.

    1. Мощность электродвигателя

    Мощность электродвигателя мотор-редуктора определяться в зависимости от необходимой нагрузки на механизм при заданной скорости вращения.

    1. Особенности эксплуатации

    Если вы планируете использовать мотор-редуктор в условиях постоянной нагрузки, при его выборе обязательно уточните у продавца на сколько часов непрерывной работы рассчитано оборудования. Также немаловажным будет узнать допустимое количество включений. Таким образов вы точно будет знать через какой период времени вам придется заменить оборудование.

    Важно: Период эксплуатации качественных мотор-редукторов при активной работе в режиме 24/7 должен составлять не менее 1 года (8760 часов).

    1. Условия работы

    До заказа мотор-редуктора необходимо определится с местом его размещения и условиями работы оборудования (в помещении, под навесом или под открытым воздухом). Это поможет вам поставить перед продавцом более четкую задачу, а ему в свою очередь подобрать товар, четко соответствующий вашим требованиям. Например, для облегчения процесса работы мотор-редуктора при очень низких или очень высоких температурах применяют специальные масла.

    Как рассчитать мотор-редуктор?

    Для расчета всех необходимых характеристик мотор-редуктора используют математические формулы. Определение типа оборудования также во многом зависит от того, для чего он будет применяться: для механизмов подъема груза, смешивания или для механизмов перемещения. Так для грузоподъемного оборудования чаще всего применяются мотор-редукторы червячного и 2МЧ. В таких редукторах исключена возможность прокручивания выходного вала при приложении к нему усилия, что избавляет от необходимости устанавливать на механизм колодочный тормоз. Для различных перемешивающих механизмов, а также для различных буровых установок применяют редукторы типа 3МП (4МП), так как они способны равномерно распределять радиальную нагрузку. При необходимости высоких показателей крутящего момента в механизмах перемещения чаще всего применяют мотор-редукторы типа 1МЦ2С, 4МЦ2С.

    Расчет основных показателей для выбора мотор-редуктора:

    1. Вычисление оборотов на выходе мотор-редуктора.

    Расчет производят по формуле:

    V=∏*2R*n\60

    R – радиус подъёмного барабана, м

    V – скорость подъема, м*мин

    n – обороты на выходе мотор-редуктора, об\мин

    1. Определение угловой скорости вращения вала мотор-редуктора.

    Расчет производят по формуле:

    ω=∏*n\30

    1. Расчет крутящего момента

    Вычисление производят по формуле:

    M=F*R (Н*М)

    Важно: Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин. Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.

    1. Выявление необходимой мощности электродвигателя

    Расчет производят по формуле:

    P=ω*M, Вт

    Важно: Правильно рассчитанная мощность привода помогает преодолевать механическое сопротивление трения, возникающее при прямолинейных и вращательных движениях. Если мощность будет превышать необходимую больше чем на 20% это усложнит контроль частоты вращения вала и подгон ее под необходимое значение.

    Где купить мотор-редуктор?

    Купить на сегодняшний день не составляется никакого труда. Рынок переполнен предложениями от разных заводов-производителей и их представителей. Большая часть производителей имеют свой интернет-магазин или официальный сайт в сети интернет.

    При выборе поставщика старайтесь сравнивать не только цену и характеристики мотор-редукторов, но и проверять саму компанию. Наличие рекомендательных писем, заверенных печатью и подписью от клиентов, а также квалифицированных специалистов в компании поможет защитить вас не только от дополнительных финансовых затрат, но и обезопасит работу вашего производства.

    Возникли проблемы с подбором мотор-редуктора? Обратитесь за помощью к нашим специалистам, связавшись с нами по телефону или оставим вопрос автору статьи.

    Редуктор червячный — один из классов механических редукторов. Редукторы классифицируются по типу механической передачи . Винт, который лежит в основе червячной передачи, внешне похож на червяка, отсюда и название.

    Мотор-редуктор - это агрегат, состоящий из редуктора и электродвигателя, которые состоят в одном блоке. Мотор-редуктор червячный создан для того, чтобы работать в качестве электромеханического двигателя в различных машинах общего назначения. Примечательно то, что данный вид оборудования отлично работает как при постоянных, так и при переменных нагрузках.

    В червячном редукторе увеличение крутящего момента и уменьшение угловой скорости выходного вала происходит за счет преобразования энергии, заключенной в высокой угловой скорости и низком крутящем моменте на входном валу.

    Ошибки при расчете и выборе редуктора могут привести к преждевременному выходу его из строя и, как следствие, в лучшем случае к финансовым потерям.

    Поэтому работу по расчету и выбору редуктора необходимо доверять опытным специалистам-конструкторам, которые учтут все факторы от расположения редуктора в пространстве и условий работы до температуры нагрева его в процессе эксплуатации. Подтвердив это соответствующими расчетами, специалист обеспечит подбор оптимального редуктора под Ваш конкретный привод.

    Практика показывает, что правильно подобранный редуктор обеспечивает срок службы не менее 7 лет — для червячных и 10-15 лет для цилиндрических редукторов.

    Выбор любого редуктора осуществляется в три этапа:

    1. Выбор типа редуктора

    2. Выбор габарита (типоразмера) редуктора и его характеристик.

    3. Проверочные расчеты

    1. Выбор типа редуктора

    1.1 Исходные данные:

    Кинематическая схема привода с указанием всех механизмов подсоединяемых к редуктору, их пространственного расположения относительно друг друга с указанием мест крепления и способов монтажа редуктора.

    1.2 Определение расположения осей валов редуктора в пространстве.

    Цилиндрические редукторы:

    Ось входного и выходного вала редуктора параллельны друг другу и лежат только в одной горизонтальной плоскости - горизонтальный цилиндрический редуктор.

    Ось входного и выходного вала редуктора параллельны друг другу и лежат только в одной вертикальной плоскости - вертикальный цилиндрический редуктор.

    Ось входного и выходного вала редуктора может находиться в любом пространственном положении при этом эти оси лежат на одной прямой (совпадают) - соосный цилиндрический или планетарный редуктор.

    Коническо-цилиндрические редукторы:

    Ось входного и выходного вала редуктора перпендикулярны друг другу и лежат только в одной горизонтальной плоскости.

    Червячные редукторы:

    Ось входного и выходного вала редуктора может находиться в любом пространственном положении, при этом они скрещиваются под углом 90 градусов друг другу и не лежат в одной плоскости - одноступенчатый червячный редуктор.

    Ось входного и выходного вала редуктора может находиться в любом пространственном положении, при этом они параллельны друг другу и не лежат в одной плоскости, либо они скрещиваются под углом 90 градусов друг другу и не лежат в одной плоскости - двухступенчатый редуктор.

    1.3 Определение способа крепления, монтажного положения и варианта сборки редуктора.

    Способ крепления редуктора и монтажное положение (крепление на фундамент или на ведомый вал приводного механизма) определяют по приведенным в каталоге техническим характеристикам для каждого редуктора индивидуально.

    Вариант сборки определяют по приведенным в каталоге схемам. Схемы «Вариантов сборки» приведены в разделе «Обозначение редукторов».

    1.4 Дополнительно при выборе типа редуктора могут учитываться следующие факторы

    1) Уровень шума

    • наиболее низкий - у червячных редукторов
    • наиболее высокий - у цилиндрических и конических редукторов

    2) Коэффициент полезного действия

    • наиболее высокий - у планетарных и одноступенчатых цилиндрических редукторах
    • наиболее низкий - у червячных, особенно двухступенчатых

    Червячные редукторы предпочтительно использовать в повторно-кратковременных режимах эксплуатации

    3) Материалоемкость для одних и тех же значений крутящего момента на тихоходном валу

    • наиболее низкая - у планетарных одноступенчатых

    4) Габариты при одинаковых передаточных числах и крутящих моментах:

    • наибольшие осевые - у соосных и планетарных
    • наибольшие в направлении перпендикулярном осям - у цилиндрических
    • наименьшие радиальные - к планетарных.

    5) Относительная стоимость руб/(Нм) для одинаковых межосевых расстояний:

    • наиболее высокая - у конических
    • наиболее низкая - у планетарных

    2. Выбор габарита (типоразмера) редуктора и его характеристик

    2.1. Исходные данные

    Кинематическая схема привода, содержащая следующие данные:

    • вид приводной машины (двигателя);
    • требуемый крутящий момент на выходном валу Т треб, Нхм, либо мощность двигательной установки Р треб, кВт;
    • частота вращения входного вала редуктора n вх, об/мин;
    • частота вращения выходного вала редуктора n вых, об/мин;
    • характер нагрузки (равномерная или неравномерная, реверсивная или нереверсивная, наличие и величина перегрузок, наличие толчков, ударов, вибраций);
    • требуемая длительность эксплуатации редуктора в часах;
    • средняя ежесуточная работа в часах;
    • количество включений в час;
    • продолжительность включений с нагрузкой, ПВ %;
    • условия окружающей среды (температура, условия отвода тепла);
    • продолжительность включений под нагрузкой;
    • радиальная консольная нагрузка, приложенная в середине посадочной части концов выходного вала F вых и входного вала F вх;

    2.2. При выборе габарита редуктора производиться расчет следующих параметров:

    1) Передаточное число

    U= n вх /n вых (1)

    Наиболее экономичной является эксплуатация редуктора при частоте вращения на входе менее 1500 об/мин, а с целью более длительной безотказной работы редуктора рекомендуется применять частоту вращения входного вала менее 900 об/мин.

    Передаточное число округляют в нужную сторону до ближайшего числа согласно таблицы 1.

    По таблице отбираются типы редукторов удовлетворяющих заданному передаточному числу.

    2) Расчетный крутящий момент на выходном валу редуктора

    Т расч =Т треб х К реж, (2)

    Т треб - требуемый крутящий момент на выходном валу, Нхм (исходные данные, либо формула 3)

    К реж - коэффициент режима работы

    При известной мощности двигательной установки:

    Т треб = (Р треб х U х 9550 х КПД)/ n вх, (3)

    Р треб - мощность двигательной установки, кВт

    n вх - частота вращения входного вала редуктора (при условии что вал двигательной установки напрямую без дополнительной передачи передает вращение на входной вал редуктора), об/мин

    U - передаточное число редуктора, формула 1

    КПД - коэффициент полезного действия редуктора

    Коэффициент режима работы определяется как произведение коэффициентов:

    Для зубчатых редукторов:

    К реж =К 1 х К 2 х К 3 х К ПВ х К рев (4)

    Для червячных редукторов:

    К реж =К 1 х К 2 х К 3 х К ПВ х К рев х К ч (5)

    К 1 - коэффициент типа и характеристик двигательной установки, таблица 2

    К 2 - коэффициент продолжительности работы таблица 3

    К 3 - коэффициент количества пусков таблица 4

    К ПВ - коэффициент продолжительности включений таблица 5

    К рев - коэффициент реверсивности, при нереверсивной работе К рев =1,0 при реверсивной работе К рев =0,75

    К ч - коэффициент, учитывающий расположение червячной пары в пространстве. При расположении червяка под колесом К ч = 1,0, при расположении над колесом К ч = 1,2. При расположении червяка сбоку колеса К ч = 1,1.

    3) Расчетная радиальная консольная нагрузка на выходном валу редуктора

    F вых.расч = F вых х К реж, (6)

    F вых - радиальная консольная нагрузка, приложенная в середине посадочной части концов выходного вала (исходные данные), Н

    К реж - коэффициент режима работы (формула 4,5)

    3. Параметры выбираемого редуктора должны удовлетворять следующим условиям:

    1) Т ном > Т расч, (7)

    Т ном - номинальный крутящий момент на выходном валу редуктора, приводимый в данном каталоге в технических характеристиках для каждого редуктора, Нхм

    Т расч - расчетный крутящий момент на выходном валу редуктора (формула 2), Нхм

    2) F ном > F вых.расч (8)

    F ном - номинальная консольная нагрузка в середине посадочной части концов выходного вала редуктора, приводимая в технических характеристиках для каждого редуктора, Н.

    F вых.расч - расчетная радиальная консольная нагрузка на выходном валу редуктора (формула 6), Н.

    3) Р вх.расч < Р терм х К т, (9)

    Р вх.расч - расчетная мощность электродвигателя (формула 10), кВт

    Р терм - термическая мощность, значение которой приводится в технических характеристиках редуктора, кВт

    К т - температурный коэффициент, значения которого приведены в таблице 6

    Расчетная мощность электродвигателя определяется:

    Р вх.расч =(Т вых х n вых)/(9550 х КПД), (10)

    Т вых - расчетный крутящий момент на выходном валу редуктора (формула 2), Нхм

    n вых - частота вращения выходного вала редуктора, об/мин

    КПД - коэффициент полезного действия редуктора,

    А) Для цилиндрических редукторов:

    • одноступенчатых - 0,99
    • двухступенчатых - 0,98
    • трехступенчатых - 0,97
    • четырехступенчатых - 0,95

    Б) Для конических редукторов:

    • одноступенчатых - 0,98
    • двухступенчатых - 0,97

    В) Для коническо-цилиндрических редукторов - как произведение значений конической и цилиндрической частей редуктора.

    Г) Для червячных редукторов КПД приводиться в технических характеристиках для каждого редуктора для каждого передаточного числа.

    Купить редуктор червячный, узнать стоимость редуктора, правильно подобрать необходимые компоненты и помочь с вопросами, возникающими во время эксплуатации, Вам помогут менеджеры нашей компании.

    Таблица 1

    Таблица 2

    Ведущая машина

    Генераторы, элеваторы, центробежные компрессоры, равномерно загружаемые конвейеры, смесители жидких веществ, насосы центробежные, шестеренные, винтовые, стреловые механизмы, воздуходувки, вентиляторы, фильтрующие устройства.

    Водоочистные сооружения, неравномерно загружаемые конвейеры, лебедки, тросовые барабаны, ходовые, поворотные, подъемные механизмы подъемных кранов, бетономешалки, печи, трансмиссионные валы, резаки, дробилки, мельницы, оборудование для нефтяной промышленности.

    Пробойные прессы, вибрационные устройства, лесопильные машины, грохот, одноцилиндровые компрессоры.

    Оборудование для производства резинотехнических изделий и пластмасс, смесительные машины и оборудование для фасонного проката.

    Электродвигатель,

    паровая турбина

    4-х, 6-ти цилиндровые двигатели внутреннего сгорания, гидравлические и пневматические двигатели

    1-х, 2-х, 3-х цилиндровые двигатели внутреннего сгорания

    Таблица 3

    Таблица 4

    Таблица 5

    Таблица 6

    охлаждения

    Температура окружающей среды, С о

    Продолжительность включения, ПВ %.

    Редуктор без

    постороннего

    охлаждения.

    Редуктор со спиралью водяного охлаждения.