Войти
Автомобильный портал - Двигатель. Замена свечей. Подсветка. Права и вождение
  • Эпифиз - квантовый компьютер в головном мозге
  • Как правильно купить квартиру через аукцион: каковы риски и особенности такого приобретения для покупателя?
  • Знак зодиака Стрелец: описание и характеристика
  • Знак зодиака Стрелец: описание и характеристика
  • Анахата чакра — за что отвечает и как ее раскрыть Кундалини йога от Майи Файнс
  • Притча о лжи Почему сила в правде
  • Способы нанесение смазки. Карты смазки и способы смазки

    Способы нанесение смазки. Карты смазки и способы смазки

    Сущность изобретения: консистентную смазку наносят на поверхность под действием центробежных сил, действующих на частицы смазки при вращении их ротором. На роторе по винтовым линиям закреплены стержни через щель корпуса, внутри которого вращается ротор. 3 ил.

    Изобретение относится к нанесению жидких, полужидких, пастообразных или порошковых материалов на поверхности. В настоящее время известны следующие способы нанесения консистентных смазок: механическое размазывание, выдавливание с последующим размазыванием, окунание в разогретую смазку, пневматическое или механическое распыление разогретой консистентной смазки. Механическое размазывание требует предварительной подготовки смазки до необходимой пластичности, специальных устройств для подачи смазки к месту ее нанесения. Выдавливание с последующим размазыванием так же требует предварительной подготовки смазки до необходимой пластичности. При выдавливании пластичность смазки уменьшается. Окунание в разогретую смазку требует специальной подготовки консистентной смазки с изменением ее агрегатного состояния - в результате значительная энергоемкость. Способ не является экологически чистым, так как при нагреве консистентных смазок выделяются легкие фракции, вредно воздействующие на окружающую среду. Пневматическое или механическое распыление разогретой консистентной смазки так же требует специальной подготовки консистентной смазки с изменением ее агрегатного состояния. Способ имеет значительную энергоемкость и не является экологически чистым. Этот способ имеет потери (до 15%) смазки на туманообразование. Наиболее близким техническим решением является способ нанесения жидких лакокрасочных материалов на внутреннюю поверхность системами центробежного распыления. При этом способе краска подается на распыляемую головку (диск, конус), устанавливаемую по центру внутренней полости изделия и вращающуюся с высокой окружной скоростью. За счет действия центробежных сил краска растягивается в пленку, перемещающуюся по направлению к кромке диска и сбрасывается с нее. При этом пленка разрывается на отдельные капли, разлетающиеся по траектории, совпадающей с касательными к кромке. Диспергированная краска образует симметричный круговой факел, который по мере удаления от центра головки увеличивается по ширине. Однако, известный способ имеет следующие недостатки. Этот способ может быть применен для нанесения разогретой консистентной смазки со всеми вытекающими отсюда недостатками: значительная электроемкость, вредное воздействие на окружающую среду, потери смазки (до 12%) на туманообразование. Этот способ не может быть применен без принципиальных изменений для механического нанесения консистентной смазки без ее разогрева, т. е. без изменения ее агрегатного состояния. Целью предложенного способа является повышение производительности нанесения консистентной смазки путем механического, без изменения агрегатного состояния консистентной смазки, нанесения ее на поверхность с одновременным перемешиванием, улучшением пластичности и перемещением к месту нанесения. Поставленная цель достигается тем, что смазка наносится ротором с закрепленными на нем по винтовым линиям стержнями. Ротор вращается внутри корпуса, перемешивает и перемещает консистентную смазку от загрузочного окна до щели корпуса, через которую смазка под действием центробежных сил выбрасывается на участок поверхности, который будет против щели. Для нанесения консистентной смазки на всю поверхность необходимо перемещать щель относительно поверхности или поверхность относительно щели. Плотность нанесения смазки на поверхность зависит от центробежной силы, действующей на частицы смазки (скорости вращения ротора и удельного веса смазки). Толщина наносимого слоя смазки зависит от зазора между смазываемой поверхностью и корпусом. На фиг. 1 изображена схема нанесения консистентной смазки на внутреннюю поверхность вращения; на фиг. 2 - схема нанесения консистентной смазки на наружную поверхность; на фиг. 3 - схема нанесения консистентной смазки на плоскую поверхность. Способ центробежного нанесения консистентных смазок испытывался на Южнотрубном заводе г. Никополя для нанесения герметизирующей и консервирующей консистентной смазки на внутреннюю поверхность муфты d у = 146 мм. В соответствии с фиг. 1 через окно загрузки консистентная смазка подается внутрь корпуса 3 к вращающемуся от эл. двигателя ротору 1. Стержни 2, закрепленные на роторе 1 по винтовым линиям, перемешивают смазку, делают ее более пластичной и одновременно перемещают от окна загрузки до щели Щ корпуса. Под действием центробежной силы консистентная смазка выбрасывается через щель Щ корпуса 3 на участок внутренней поверхности муфты. Для нанесения смазки на всю внутреннюю поверхность муфта делает один оборот. Технико-экономическая эффективность. Использование предлагаемого способа нанесения консистентной смазки на поверхности обеспечивает по сравнению с существующими способами следующие преимущества:

    1. Совмещение процессов перемещения смазки к месту нанесения, перемешивания и нанесения ее на поверхность. 2. Улучшение технологических свойств смазки при ее нанесении на поверхность, так как при нанесении смазки происходит ее интенсивное перемешивание и, следовательно, смазка становится пластичнее. 3. Меньшая энергоемкость, так как отсутствует разжижение смазки разогревом. 4. Возможность нанесения на поверхности герметизирующих смазок с волокнистыми наполнителями. 5. Возможность нанесения консистентных смазок или покрытий, не допускающих их разогрева. 6. Отсутствие потерь консистентной смазки. (56) Гоц В. Л. Техника окраски внутренних поверхностей, М. : Машиностроение, 1971, с. 37.

    ФОРМУЛА ИЗОБРЕТЕНИЯ

    СПОСОБ ЦЕНТРОБЕЖНОГО НАНЕСЕНИЯ КОНСИСТЕНТНЫХ СМАЗОК НА ПОВЕРХНОСТИ, при котором консистентная смазка наносится на поверхности под действием центробежных сил, действующих на частицы смазки при вращении их ротором, отличающийся тем, что, с целью повышения производительности процесса нанесения консистентной смазки без изменения ее агрегатного состояния, нанесение ее на поверхность осуществляется вращающимся ротором с закрепленными на нем по винтовым линиям стержнями через щель корпуса, в котором вращается ротор.

    ОТРАСЛЕВОЙ СТАНДАРТ

    Приказом Союзпромарматуры от «28 » марта 1975 г. № 39 срок введения установлен с «1 » января 1977 г. на срок до «1» января 1982 г. *

    * Снято ограничение срока действия.

    Несоблюдение стандарта преследуется по закону

    Примечания : 1. Материалы, указанные со знаком * , применять по технической документации, утвержденной в установленном порядке.

    2 . Допускается применять другие материалы с аналогичными свойствами по согласованию с предприятием-разработчиком настоящего стандарта.

    (Измененная редакция, Изм. № 2, 3).

    3 . Подготовку поверхностей деталей к нанесению смазок следует производить в помещении, оборудованном местной вытяжной вентиляцией. Температура воздуха в помещении - от 10 до 30 °С.

    4 . Перед нанесением смазки все трущиеся поверхности деталей следует проверить на отсутствие коррозии, очистить от загрязнения, металлической стружки, обезжирить и просушить.

    5 . Обезжиривание металлических деталей (шпинделей, резьбовых втулок, винтов, шпилек, гаек и др.) следует производить в водном моющем растворе: тринатрийфосфат технический - 15 г на литр воды и вещество вспомогательное - 2 г на литр воды. Температура моющего раствора - от 60 до 80 °С. Обезжиренные детали следует промыть 0,1-процентным раствором двухромовокислого калия. Температура раствора - от 60 до 80 °С.

    6 . Допускается при выпуске арматуры партиями до 4000 штук обезжиривание металлических деталей производить двукратной промывкой керосином последовательно в двух ваннах в течение 10 минут. Для первой промывки следует использовать керосин из второй промывочной ванны. При первой промывке рекомендуется пользоваться капроновыми ершами или малярными кистями.

    Обезжиривание резьбовой части шпинделей в сильфонных сборках следует производить хлопчатобумажной салфеткой, смоченной в спирте и отжатой до полусухого состояния.

    7 . Антифрикционные смазки и материалы для промывки и обезжиривания должны быть согласованы заказчиком.

    8 . Подготовить подшипники качения к нанесению смазки:

    обезжирить в ваннах с керосином в течение 20 минут и в ванне со спиртом в течение 3 минут.

    9 . Обезжиривание резиновых деталей следует производить двукратной протиркой хлопчатобумажными салфетками, смоченными в этиловом спирте.

    10 . Контроль чистоты поверхности следует производить:

    а) визуальным осмотром;

    б) хлопчатобумажной салфеткой (только для деталей специальной арматуры).

    При протирке поверхностей деталей сухая хлопчатобумажная салфетка должна оставаться чистой.

    Если салфетка будет иметь следы грязи или масла, детали следует отправить на повторную промывку.

    11 . Сушка деталей после обезжиривания должна производиться:

    а) после обработки моющим раствором - по технологии предприятия-изготовителя;

    б) после обработки растворителями - на воздухе до полного удаления запаха растворителя.

    Температура воздуха - от 10 до 30 °С.

    Время сушки - от 10 до 30 минут.

    Сильфонные сборки специальной арматуры следует дополнительно просушить в течение от 15 до 30 минут в термостате при температуре от 100 до 110 °С.

    12 . Контроль качества сушки деталей и узлов следует производить с помощью фильтровальной бумаги: на поверхности фильтровальной бумаги, приложенной к детали, не должно оставаться следов растворителя. Допускается контроль качества сушки деталей арматуры общепромышленного назначения производить визуально.

    13 . Периодичность смены растворителей устанавливается технологическим процессом в зависимости от объема, количества промываемых деталей и норм расхода, установленных настоящим стандартом.

    14 . Антифрикционные смазки на поверхность деталей следует наносить в условиях, гарантирующих смазываемые поверхности от грязи, влаги. Температура воздуха в помещении - от 10 до 30 °С.

    15 . Марка смазки указывается в чертежах и должна удовлетворять требованиям действующих стандартов. Не допускаются к применению смазки, имеющие поврежденную упаковку, а также не имеющие упаковочного листа или паспорта, подтверждающего соответствие данной партии требованиям соответствующих стандартов.

    Смазку на трущиеся поверхности деталей арматуры следует наносить непосредственно перед сборкой арматуры согласно указаниям чертежей, карт смазки, технических требований или инструкций по эксплуатации арматуры. Антифрикционные смазки могут быть использованы в течение года со дня вскрытия тары и должны храниться при температуре от 10 до 30 °С в условиях, гарантирующих смазки от попадания грязи и влаги.

    б) Инструкция по организации пожарно-профилактической безопасности на предприятиях и в организациях Министерства химического и нефтяного машиностроения. Утверждены 24 октября 1969 г.

    (Измененная редакция, Изм. № 3).

    23 . При выполнении работ по подготовке поверхности деталей к нанесению смазки:

    а) концентрация паров керосина в помещении, где происходит обезжиривание, не должна превышать 10 мг на 1 дм воздуха:

    б) конструкция оборудования, используемого при обезжиривании, должна обеспечить защиту работающих от попадания растворителя;

    в) рабочие, производящие обезжиривание растворителями, должны быть обеспечены фартуками, обувью, перчатками, респираторами;

    г) рабочие, производящие обезжиривание водными моющими растворами, должны обеспечиваться резиновыми фартуками, обувью и перчатками.

    На предприятии должна быть разработана и утверждена главным инженером инструкция по требованиям безопасности, пожарной безопасности и промышленной санитарии, учитывающая местные производственные условия.

    24 . К выполнению работ по подготовке поверхностей деталей к нанесению смазок допускаются лица, изучившие устройство оборудования и технологический процесс и прошедшие инструктаж по требованиям безопасности, пожарной безопасности и промышленной санитарии.

    ОТРАСЛЕВОЙ СТАНДАРТ

    Приказом Союзпромарматуры от «28 » марта 1975 г. № 39 срок введения установлен с «1 » января 1977 г. на срок до «1» января 1982 г.*

    * Снято ограничение срока действия.

    Несоблюдение стандарта преследуется по закону

    Примечания: 1. Материалы, указанные со знаком*, применять по технической документации, утвержденной в установленном порядке.

    Допускается применять другие материалы с аналогичными свойствами по согласованию с предприятием-разработчиком настоящего стандарта.

    (Измененная редакция, Изм. № 2, 3).

    Подготовку поверхностей деталей к нанесению смазок следует производить в помещении, оборудованном местной вытяжной вентиляцией. Температура воздуха в помещении - от 10 до 30 °С.

    Перед нанесением смазки все трущиеся поверхности деталей следует проверить на отсутствие коррозии, очистить от загрязнения, металлической стружки, обезжирить и просушить.

    Обезжиривание металлических деталей (шпинделей, резьбовых втулок, винтов, шпилек, гаек и др.) следует производить в водном моющем растворе: тринатрийфосфат технический - 15 г на литр воды и вещество вспомогательное - 2 г на литр воды. Температура моющего раствора - от 60 до 80 °С. Обезжиренные детали следует промыть 0,1-процентным раствором двухромовокислого калия. Температура раствора - от 60 до 80 °С.

    Допускается при выпуске арматуры партиями до 4000 штук обезжиривание металлических деталей производить двукратной промывкой керосином последовательно в двух ваннах в течение 10 минут. Для первой промывки следует использовать керосин из второй промывочной ванны. При первой промывке рекомендуется пользоваться капроновыми ершами или малярными кистями.

    Обезжиривание резьбовой части шпинделей в сильфонных сборках следует производить хлопчатобумажной салфеткой, смоченной в спирте и отжатой до полусухого состояния.

    Антифрикционные смазки и материалы для промывки и обезжиривания должны быть согласованы заказчиком.

    Подготовить подшипники качения к нанесению смазки:

    обезжирить в ваннах с керосином в течение 20 минут и в ванне со спиртом в течение 3 минут.

    Обезжиривание резиновых деталей следует производить двукратной протиркой хлопчатобумажными салфетками, смоченными в этиловом спирте.

    Контроль чистоты поверхности следует производить:

    а) визуальным осмотром;

    б) хлопчатобумажной салфеткой (только для деталей специальной арматуры).

    При протирке поверхностей деталей сухая хлопчатобумажная салфетка должна оставаться чистой.

    Если салфетка будет иметь следы грязи или масла, детали следует отправить на повторную промывку.

    Сушка деталей после обезжиривания должна производиться:

    а) после обработки моющим раствором - по технологии предприятия-изготовителя;

    б) после обработки растворителями - на воздухе до полного удаления запаха растворителя.

    Температура воздуха - от 10 до 30 °С.

    Время сушки - от 10 до 30 минут.

    Сильфонные сборки специальной арматуры следует дополнительно просушить в течение от 15 до 30 минут в термостате при температуре от 100 до 110 °С.

    Контроль качества сушки деталей и узлов следует производить с помощью фильтровальной бумаги: на поверхности фильтровальной бумаги, приложенной к детали, не должно оставаться следов растворителя. Допускается контроль качества сушки деталей арматуры общепромышленного назначения производить визуально.

    Периодичность смены растворителей устанавливается технологическим процессом в зависимости от объема, количества промываемых деталей и норм расхода, установленных настоящим стандартом.

    Антифрикционные смазки на поверхность деталей следует наносить в условиях, гарантирующих смазываемые поверхности от грязи, влаги. Температура воздуха в помещении - от 10 до 30 °С.

    Марка смазки указывается в чертежах и должна удовлетворять требованиям действующих стандартов. Не допускаются к применению смазки, имеющие поврежденную упаковку, а также не имеющие упаковочного листа или паспорта, подтверждающего соответствие данной партии требованиям соответствующих стандартов.

    Смазку на трущиеся поверхности деталей арматуры следует наносить непосредственно перед сборкой арматуры согласно указаниям чертежей, карт смазки, технических требований или инструкций по эксплуатации арматуры. Антифрикционные смазки могут быть использованы в течение года со дня вскрытия тары и должны храниться при температуре от 10 до 30 °С в условиях, гарантирующих смазки от попадания грязи и влаги.

    (Измененная редакция, Изм. № 3).

    При выполнении работ по подготовке поверхности деталей к нанесению смазки:

    а) концентрация паров керосина в помещении, где происходит обезжиривание, не должна превышать 10 мг на 1 дм воздуха:

    б) конструкция оборудования, используемого при обезжиривании, должна обеспечить защиту работающих от попадания растворителя;

    в) рабочие, производящие обезжиривание растворителями, должны быть обеспечены фартуками, обувью, перчатками, респираторами;

    г) рабочие, производящие обезжиривание водными моющими растворами, должны обеспечиваться резиновыми фартуками, обувью и перчатками.

    На предприятии должна быть разработана и утверждена главным инженером инструкция по требованиям безопасности, пожарной безопасности и промышленной санитарии, учитывающая местные производственные условия.

    К выполнению работ по подготовке поверхностей деталей к нанесению смазок допускаются лица, изучившие устройство оборудования и технологический процесс и прошедшие инструктаж по требованиям безопасности, пожарной безопасности и промышленной санитарии.

    ОП ИСАНИЕИЗОБРЕТЕНИЯ К АВТОРСКОМУ СЮИДИЕЛЬСТВУ Союз Советских Социалистических Республик(51) М. Кл, В 28 В 7/3 с присоединением заявки сударственный комет авета Мнннстроа ССС оа делам нзооретеннйн аткрытнй 23) Приоритет) Опубликован 15,05,78,Бюллетень 1(У 2) Автор изобрете И. В, Поперечн 71) Заявитель о-исследовательский институт строительных конструкций 54) СПОСОБ НАНЕСЕНИЯ СМАЗКИ НА ПОВЕРХНОСОПАЛУБКИ повышение проулучшение качес что по:спосо верхность опа ее и распылен ение ее осущес Улубки, е, раИзвестен сплитисполвключающий рпри обычнойедуюключ аетс телем на ни ог мазк ия металл й и, зоб-,игае 16 ениям,а Изобретение относится к.способам нанесения смазки на поверхность опалубки или формы при изготовлении железобетонных иэдепособ смазки металлических ьэуемых для формования бетона,азогрев и смешение твердых температуре жиров с раствориев и очистку плит, нанесение тонким слоем методом окунаских плит в резервуар со смаз Наиболее близким к описываемому иретению по технической сущности и достмому результату является способ нанессмазки на поверхность опалубки или форвключающий разогрев ее и распыление,именно, разогреву подвергают жирные компненты, смешивают с растворителем и наносна поверхность опалубки 121 ,Недостатками известных способов являются, перерасход смазки; ухудшение условий труда; последний способ нанесения смаэки взрывоопасен,Цель изобретенияводительности труда иповерхности иэделий.Это достигается темнанесения смазки на повключающему разогрев.зогрев смазки и распылв струе горячего пара.Сущность способа за10 щем. Жировые компоненты загружают в емкость, разогревают паром при непрерывном перемешивании до получения однородной массы, которую по трубопроводам подают к распылителю, при этом смазку непрерывным потоком вводят в струю распыливающего потока пара. В струе пара смазка дополнительно разогревается, распыливается и вместе с пв- ром направляется на поверхность опалубки.Пар дополнительно разогревает поверхность опалубки в месте нанесения смазки и обеспечивает равномерное ее нанесение иарасход не более 3-6 г/м в зависимости от угла наклона струи пара относительно смазываемойповерхности. Уголнаклонаструипарв606726 Составитель В. ЛебедеваРедактор Л. Батанова Техред Н, Бабурка Корректор С. Шекмар Заказ 2505/9 Тираж 683 Подписное ЦНИИПИ Государственного комитета Совета Министров СССР по делам изобретений и открытийфилиал ППП "Патент, г. Ужгород, ул, Проектная, 4 3Ювыбирают в пределах 0-90 в зависимостиот состояния и расположения смазываемой поверхности.Отработанный пар с остатками смазки принудительно отводят в холодильник, иэ ко торого смазку после отделения от конденса5 та возвращают в смеситель для повторного крименения,Промаека только рабочих поверхностей форм н возврат неиспользованной смазки,для повторного:применения позволяет умень- О10ф шить ее расход, а исключение из состава смазки растворителя и отвод пара в холодильник для конденсирования улучшают. условия труда. 4формула изобретения Способ нанесения смазки на поверхностьопалубки, включающий разогрев ее и распыление,отличающийся тем,что; с целью повышении производительноститруда и улучшения качества поверхности изделий, разогрев смазки и распыление ееосуществляют в струе горячего пара.Источники информации., принятые во внимание при экснертизе:1, Заявка Японии М 43-76733,кл. В 28 В 17/00, 1972.2. Авторское свидетельство СССР

    Заявка

    2086799, 24.12.1974

    НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

    ПОПЕРЕЧНЫЙ ИВАН ВАСИЛЬЕВИЧ

    МПК / Метки

    Код ссылки

    Способ нанесения смазки на поверхность опалубки

    Похожие патенты

    Диаметр другого контактирующего ролйка равен йли больше 0,25 диаметравалка. б 8503 4 общий вид; на фиг. 2 - отжимной ро,лик, общий вид.Устройство включает бесконечнуюленту 1,которая поддерживается внатянутом состоянии при помощи поддерживающего ролика 2, контактирующих с валком через ленту роликов3, 4 и отжимного ролика 5, Отжимнойролик смонтирован на полой оси б,служащей для подвода технологическойсмазки, и вместе с огибающей.егобесконечной лентой й поверхностьювалка 7 образует.замкнутое пространство, в котором между секциями 8 отжияного ролика установлены форсунки 9.Устройство работает:следующим образом.При контактировании бесконечнойленты 1 с поверхностью валка 7 припомощи роликов 3, 4 образуется иэо лированное от попадания в него...

    Проходящая в стеклянной трубке, разорвана газовыми пузырями, так как в зазор между поршнем и цилиндром проникает воздух. Если отношение объема масла к объему проходящего в трубке воздуха равно или больше 10 в; 12, то условия смазки в паре поршень - палец удовлетворительные. Если отношение объема масла к объему воздуха меньше, то условия смазки недостаточные.Предложенный способ иллюстрируется чертежом, на котором показан узел компрессора, содержащий пару поршень 1 - палец 2, цилиндр 3, стеклянную трубку 4 со шкалой и стробоскоп 5.При превышении допустимого давления в компрессоре в зоне сжатия А или при повышенном зазоре Б между поверхностью поршня 1 и цилиндра 3 указанного компрессора уплотняющие свойства масла, поступающего в...

    Гайки винтовой пары, а шайбы с меньшим диаметром отв".рстий вы- И 2полнвны с радиальным разрезом на вели(чину высоты резьбы.На чертеже представлено предлагаемое устройство фитильной смазки.Устройство состоит из винта 1, гайки 2 и обоймы 3 с шайбами 4, 5 и 6, собранными в пакеты (на чертеже изображен один пакет). Диаметр отверстия шайбы 4 выполнен раиным внутреннему диаметру нарезки винта 1, а диаметры отверстий шайб 5 и 6 - равными наружному диаметру нарезки винта 1, Обойма 3 с шайбами размещена на торцевой поверхности гайки 2 винтовой пары. Шайба 4 выполнена с радиальным. Разрезом 7 на величину высоты резьбы винта 1. При вращении гайки 2 винт перемещается, смазка выжимается из шайб 4, 5 и 6 и наносится тонким слоем на...

    ОПИСАНИЕ ИЗОБРЕТЕНИЯ

    Изобретение относится к области техники, связанной с разработкой и применением способов смазки скользящей поверхности лыж (систем нанесения покрытий на скользящую поверхность лыж).

    Занятие лыжным спортом, так же как лыжные прогулки и походы, невозможно представить без использования специальных покрытий (лыжных смазок). Лыжные смазки применяют для того, чтобы лыжи хорошо скользили - лыжники говорят «катили», и не проскальзывали назад - на языке лыжников «держали». Поэтому все смазки разделяют на две большие группы: мази скольжения или парафины, которые обеспечивают наилучшее скольжение, и мази держания, которые обеспечивают отсутствие проскальзывания, «держат».

    Парафины (мази скольжения) разделяются на две группы: без фтора (простые) и фтористые, обеспечивающие лучшее скольжение. При применении парафинов с добавками фтора учитывается не только температура воздуха, но и его влажность, а также тип и структура снега.

    Скользящая поверхность современных лыж выполнена из полиэтиленов различных сортов. В гоночных моделях лыж скользящая поверхность изготавливается из аморфных полиэтиленов с высоким молекулярным весом. Различаются они содержанием добавок, например, графита (черная скользящая поверхность) или фтороуглерода (цветные вкрапления в пластике), «впекаемого» в структуру пластика. Полиэтилен состоит из маленьких кристаллов, окруженных менее структурированным аморфным материалом.

    При нанесении покрытий по современным технологиям, то есть при нагревании скользящей поверхности лыж, некоторые из кристаллов материала покрытия начинают плавиться прежде, чем весь материал (при температуре приблизительно 135°С). Когда материал смазки вплавляется утюгом в скользящую поверхность, жидкий парафин проникает между кристаллами и смешивается с аморфным материалом. Это значит, что происходит не только насыщение скользящей поверхности материалом смазки, но и непосредственно изменяется ее химическая структура.

    Обработка поверхности лыжи смазкой не только улучшает качество скольжения, но и предохраняет поверхность от механического разрушения кристаллами льда, механическими загрязнениями снега.

    К сожалению, даже качественно нанесенное парафиновое покрытие разрушается при эксплуатации лыж и туристу приходится повторять трудоемкую операцию практически ежедневно, а спортсмену - многократно в течение соревнований. В связи с этим, необходимость применения эффективного способа нанесения скользящих покрытий, способного обеспечить высокое качество скольжения и длительность эксплуатации, является актуальной.

    Известен способ смазки скользящей поверхности лыж , заключающийся в том, что нанесение смазки осуществляют электроутюгом, снабженным вращающейся щеткой, с которой соприкасается брусок лыжной мази. Нагретый утюг перемещают по скользящей поверхности лыжи, нагревая ее, и одновременно с этим, вращающаяся щетка захватывает частицы мази и наносит ее на нагретую поверхность лыжи.

    Известен также способ смазки скользящей поверхности лыж , реализуемый с помощью устройства - плиты, в которой установлен плоский электронагревательный элемент. На плите смонтирована емкость с лыжной мазью, снабженная пресс-масленкой, приводимой в действие рычагом, свободный конец которого смонтирован на рукоятке. Передвигая устройство по поверхности лыжи, спортсмен дозирует вручную количество подаваемой на лыжу мази.

    Применяется также способ по патенту , при реализации которого лыжа устанавливается в наклонном положении на специальном стенде скользящей поверхностью наружу. Вдоль этой поверхности размещено сопло, перемещаемое вверх-вниз по направляющим и соединенное трубопроводом с емкостью для разогрева лыжной мази.

    Недостатком всех описанных аналогов является: во-первых, - отсутствие контроля температуры поверхности лыжи и, следовательно, неравномерный ее нагрев по длине, что обуславливает перегрев смазки и прожоги поверхности лыжи; а во-вторых, - недостаточное заполнение имеющихся на скользящей поверхности лыжи пор и микротрещин смазкой, что ухудшает ее беговые свойства.

    Наиболее близким к предлагаемому техническому решению является способ нанесения смазки на скользящую поверхность лыжи по патенту , принятому за прототип. Способ заключается в нанесении материала смазки на скользящую поверхность лыж, осуществлении энергетического воздействия и равномерном распределении смазки.

    В прототипе лыжи размещают в контейнере, затем наносят смазку на их скользящую поверхность с разогревом поверхности и смазки. Перед нагреванием контейнер, с помещенными в него лыжами, герметизируют. Лыжи в контейнере помещают на упоры, выполненные из материала смазки, между которыми по всей длине лыж, со стороны их скользящей поверхности, равномерным слоем насыпают смазку в виде порошка. Затем из контейнера откачивают воздух до вакуума 0,2-0,9 атм и нагревают в течение 4-20 мин внутренний объем контейнера с находящимися в нем лыжами и смазкой до 70-90°С. После окончания нагрева давление внутри контейнера повышают до 1-3 атм и поддерживают его в течение 1-3 мин и затем лыжи извлекают.

    Прототип позволяет частично устранить недостатки известных способов, однако обладает следующими существенными недостатками:

    1. Не обеспечивает глубокого проникновения материала смазки в структуру полимерного покрытия лыжи. Улучшить проникновение возможно только путем повышения температуры (снижения вязкости смазки и расширения пор полимерного покрытия). Однако такой путь на практике реализовать недопустимо из-за меньшей температуры плавления кристаллов полимерного покрытия, по сравнению с температурой плавления окружающего их аморфного материала, в который должен проникать парафин. На практике это приводит к прожогам скользящей поверхности и порче лыж.

    2. Не обеспечивает длительного нахождения на скользящей поверхности и выделения материала смазки на поверхность из глубины материала лыжи при эксплуатации лыж. В результате происходит освобождение приглаженных парафином ворсинок полимерного материала поверхности лыжи и образование новых. При скольжении эти ворсинки снижают скорость и их необходимо либо срезать (шкурить), либо вплавлять в поверхность. И то и другое приводит к ухудшению качества скользящей поверхности и снижению срока эксплуатации дорогостоящих лыж.

    Задача, на решение которой направлено изобретение, заключается в устранении недостатков существующего способа и создании нового способа, способного обеспечить равномерное нанесение смазки и лучшее заполнение микропор на поверхности скольжения лыжи, осуществить равномерное нанесение смазки на скользящую поверхность лыжи при температуре, ниже температуры плавления материала скользящей поверхности и осуществить глубокое проникновение парафина в ее поры.

    Проведенный анализ реализуемых в настоящее время способов смазки скользящей поверхности лыж показал их несостоятельность и необходимость поиска новой технологии нанесения покрытий на скользящую поверхность лыж. Очевидно, что такая технология должна обеспечивать глубинное проникновение парафина в структуру полимерного материала скользящей поверхности при температуре, меньшей температуры его плавления при одновременной полировке поверхности и удалении ворсинок.

    Суть предлагаемого технического решения заключается в нанесении материала смазки на скользящую поверхность лыж, осуществлении энергетического воздействия, равномерном распределении материала смазки вдоль участков скользящей поверхности лыж, причем энергетическое воздействие осуществляют с помощью электромеханического преобразователя, имеющего плоскую излучающую поверхность и ограничитель, обеспечивающий регулируемый зазор между излучающей поверхностью и скользящей поверхностью лыжи. В зазор вводят смазку и на материал смазки воздействуют ультразвуковыми колебаниями в диапазоне частот 20...100 кГц, с интенсивностью, достаточной для возникновения кавитации в материале смазки. Перемещением преобразователя, вдоль скользящей поверхности лыж, осуществляют формирование слоя смазки между излучающей поверхностью преобразователя и скользящей поверхностью лыж, а скорость перемещения преобразователя устанавливают в зависимости от вязкости и кавитационной прочности материала смазки.

    Анализ функциональных возможностей различных методов энергетического воздействия на скользящую полимерную поверхность лыж позволил установить эффективность применения ультразвуковых технологий, основанных на явлениях ультразвуковой пропитки, низкотемпературной сварки, снижения вязкости, дегазации .

    Ультразвуковые технологии, применительно к решению проблемы подготовки скользящей поверхности лыж, позволяют реализовать следующие технологические процессы:

    1. Ультразвуковую пропитку , основанную на звукокапилярном эффекте и снижении вязкости материалов, способную обеспечить ввод расплавленного материала смазки глубоко в материал поверхности при низких температурах, т.е. без термического повреждения поверхности. В процессе ввода ультразвуковых колебаний происходит ускорение молекул смазки за счет возникающей в ней кавитации и более глубокое их проникновение в скользящую поверхность лыжи. При введении ультразвука в смазку происходит его дегазация, что обеспечивает ровную поверхность парафинового покрытия, без газовых пузырьков - пустот.

    2. Ультразвуковую сварку , реализуемую при температурах ниже температуры плавления соединяемых материалов и основанную на многократном ускорении процессов диффузии. Она обеспечивает не только интенсификацию проникновения парафина в полимерное покрытие, но и позволяет разрушать и вваривать в поверхность лыжи образовавшиеся на ней волоски (ворсинки).

    3. Размягчение смазки (перевод в вязкопластичное состояние), происходящее при температуре ниже температуры ее плавления за счет снижения вязкости материала, подвергаемого УЗ воздействию. Возможно, также, низкотемпературное распыление материала смазки при применении ультразвуковых колебаний высокой интенсивности.

    К несомненным достоинствам ультразвуковой технологии следует отнести, также, возможность исключения непосредственного механического контакта поверхности ультразвукового преобразователя с обрабатываемой поверхностью. Воздействие осуществляется через тонкий слой (0,5...3 мм) жидкого материала смазки в кавитирующем состоянии. Это исключает разогрев скользящей полиэтиленовой поверхности до температуры плавления или разложения полиэтилена.

    Предложенный способ смазки скользящей поверхности лыж поясняется фиг.1, на которой приняты следующие обозначения:

    1 - колебательная система, 2 - пьезокерамические элементы, 3 - отражающая накладка, 4 - корпус, 5 - защитный корпус, 6 - вентилятор, 7 - подложка, 8 - упорное кольцо, 9 - лыжа, 10 - скользящая поверхность лыжи, 11 - смазочный кавитирующий материал.

    Для практической реализации предложенного способа нанесения смазки на скользящую поверхность лыжи 10 используются пьезоэлектрическая колебательная система 1 (фиг.2) и осуществляющий ее электрическое питание электронный генератор (не показан). Реализация предложенного способа осуществляется следующим образом. На скользящую поверхность лыжи 10 наносится материал смазки 11, после чего происходит обеспечение контакта ультразвуковой колебательной системы с наносимым покрытием и ввод ультразвуковых колебаний. При этом происходит поглощение УЗ колебаний в материале смазки 11 и смазка становится жидкой, в ней начинаются кавитационные процессы, при которых взрывы (захлопывания) кавитационных пузырьков обеспечивают проникновение смазки в глубь скользящей поверхности лыжи 10.

    Для практической реализации предложенного способа создано специализированное малогабаритное оборудование, обеспечивающее необходимую и достаточную мощность излучения на заданной площади обработки.

    Оборудование включает в себя:

    1) специализированную ультразвуковую колебательную систему 1 (см. фиг 2), имеющую размер рабочей поверхности, превосходящий ширину скользящей поверхности лыжи и обеспечивающую равномерное распределение ультразвуковых колебаний на излучающей поверхности для обеспечения равномерного размягчения и нанесения парафина по всей ширине лыжи;

    2) генератор электрических колебаний ультразвуковой частоты для питания колебательной системы, обеспечивающий регулировку выходной мощности и стабилизацию ультразвукового воздействия в процессе обработки поверхности лыж.

    Технический результат заключается в создании нового способа, позволяющего повысить качество нанесенного на скользящую поверхность лыж покрытия, повышении производительности процесса при одновременном уменьшении энергозатрат и исключении необходимости применения систем термического нагрева. Эффект достигается за счет оптимизации параметров энергетического и временного воздействия. Разработанный способ нанесения покрытия на скользящую поверхность лыж обеспечивает снижение трения скольжения не менее чем на 5%, увеличение объема смазки, введенной в материал скользящей поверхности лыж - на 5...10% (в зависимости от типа лыж и покрытия), что позволяет не менее чем в 2 раза увеличить время эксплуатации лыж.

    Поскольку используемые материалы смазок имеют различную исходную вязкость, различную температуру плавления, кавитационный процесс возникает в них при различных мощностях ультразвукового воздействия, и скорость перемещения преобразователя при нанесении покрытия может быть различной и устанавливаться экспериментальным путем для каждого вида смазки.

    Для реализации предложенного способа разработана специализированная ультразвуковая колебательная система, выполненная по полуволновой схеме в виде пьезоэлектрического преобразователя Ланжевена . Внешний вид колебательной системы представлен на фиг.2. Спроектированная и разработанная ультразвуковая колебательная система работает следующим образом. При подведении к электродам пьезоэлементов 3 электрического напряжения происходит преобразование электрических колебаний в механические колебания, которые распространяются в колебательной системе 1 и усиливаются за счет выбора продольных и поперечных размеров накладки 2 таким образом, что продольный резонанс всей колебательной системы совпадает с диаметральным резонансом рабочей частотно-понижающей накладки.

    Колебательная система 1 крепится в корпус 4 при помощи винтов, вкручивающихся в подложку 7 (фиг.1). Колебательная система снабжена крепежным фланцем, который зажимается между корпусом и подложкой 7. Колебательная система снабжена дополнительным защитным корпусом 5 (фиг.1). Воздух вентилятором 6, через отверстия, втягивается в корпус колебательной системы, проходя там, он охлаждает разогревающиеся пьезокерамические элементы 2.

    Разработанная колебательная система имеет рабочую частоту 27±3,3 кГц, диаметр рабочей излучающей поверхности 65 мм. Для обеспечения регулируемого зазора между излучающей поверхностью ультразвуковой колебательной системы 1 и поверхностью лыж 10 использовано упорное кольцо 8.

    Одним из составляющих ультразвукового технологического оборудования является электронный генератор электрических колебаний ультразвуковой частоты (на фигурах не показан). Он предназначен для питания ультразвуковой колебательной системы.

    Для обеспечения максимальной эффективности работы колебательной системы, при всех возможных изменениях ее параметров, электронный генератор снабжен блоком автоматической подстройки частоты генератора и стабилизации амплитуды колебаний излучающей поверхности.

    Разработанный генератор для питания ультразвуковой колебательной системы имеет следующие параметры:

    Рабочая частота, кГц 27±3,3
    Пределы регулирования мощности, % 0-100
    Потребляемая электрическая мощность, Вт 250
    Напряжение питания, В 220±22

    Внешний вид аппарата представлен на фиг.3.

    Кроме интенсификации процесса пропитки и удаления ворсинок, применение ультразвукового аппарата исключило необходимость применения специальных нагревательных приборов (утюгов) для разогрева материала смазки.

    Проведенные исследования функциональных возможностей созданного ультразвукового аппарата позволили разработать следующую методику нанесения парафина на скользящую поверхность лыж:

    1) предварительное включение и работа аппарата без нагрузки (на воздух) на мощности 100% в течение 3...5 минут. Такой режим обеспечивает прогрев излучающей поверхности до 80...85°С. При такой температуре на поверхности плавится материал смазки (парафин);

    2) снижение мощности аппарата ниже 100%, не более 75%;

    3) нанесение парафина на скользящую поверхность и работа аппарата на мощности 75...85% неограниченное время.

    При этом скорость нанесения смазки отличалась незначительно при использовании различных материалов смазки. Уменьшение скорости не приводило к снижению качества нанесения смазки.

    Проведенные испытания показали, что скорость скольжения лыжи после применения ультразвукового способа нанесения парафина на скользящую поверхность лыжи увеличивается на 5...7%, а длительность работы скользящей поверхности увеличивается на 13-15%.

    Внешний вид созданного ультразвукового аппарата представлен на фиг.3.

    Таким образом, предложенный способ обеспечивает повышение эффективности (повышение производительности и улучшение качества пропитки) нанесения покрытия на скользящую поверхность лыж за счет реализации возможностей ультразвуковой интенсификации процессов.

    В результате реализации предлагаемого технического решения оптимизирована технология нанесения покрытия на лыжи, с точки зрения обеспечения максимальной производительности, реализации возможности контроля за процессом, снижены энергозатраты и исключено применение высокотемпературных устройств.

    Разработанный в лаборатории акустических процессов и аппаратов Бийского технологического института Алтайского государственного технического университета способ нанесения покрытия на поверхность лыж прошел лабораторные и технические испытания и был практически реализован в действующей установке. Мелкосерийное производство устройств планируется начать в 2004 году.

    Источники информации

    1. Патент ФРГ №3704216 от 1987 г.

    2. Патент Швеции №446942 от 1986 г.

    3. Патент Франции №2577816 от 1986.

    4. Патент РФ №2176539 (прототип).

    5. Холопов Ю.В. Ультразвуковая сварка пластмасс и металлов Л.:

    Машиностроение, 1988 г.

    6. Донской А.В., Келлер O.K., Кратыш Г.С. Ультразвуковые электротехнические установки Л.: Энергоатомиздат, 1982.

    7. Прохоренко П.П., Дежкунов Н.В., Коновалов Г.Е. Ультразвуковой капиллярный эффект. Минск, «Наука и техника», 1981, 135 с.

    8. Меркулов А. Г., Харитонов А.В. Теория и расчет составных концентраторов, «Акустический журн.», 1959, N 2.

    ФОРМУЛА ИЗОБРЕТЕНИЯ

    Способ смазки скользящей поверхности лыж, заключающийся в нанесении материала смазки на скользящую поверхность лыж, осуществлении энергетического воздействия, равномерном распределении материала смазки вдоль участков скользящей поверхности лыж, отличающийся тем, что энергетическое воздействие осуществляют с помощью электромеханического преобразователя, имеющего плоскую излучающую поверхность и ограничитель, обеспечивающий регулируемый зазор между излучающей поверхностью и скользящей поверхностью лыжи, вводят в зазор смазку и на материал смазки воздействуют ультразвуковыми колебаниями в диапазоне частот 20-100 кГц, с интенсивностью, достаточной для возникновения кавитации в материале смазки, перемещением преобразователя, вдоль скользящей поверхности лыж, осуществляют формирование слоя смазки между излучающей поверхностью преобразователя и скользящей поверхностью лыж, а скорость перемещения преобразователя устанавливают в зависимости от вязкости и кавитационной прочности материала смазки.