Войти
Автомобильный портал - Двигатель. Замена свечей. Подсветка. Права и вождение
  • Договор аренды банковской ячейки
  • Налог на частный дом и земельный участок для физических лиц
  • Можно ли продать квартиру с перепланировкой, если она неузаконенная Как продать квартиру незаконной перепланировкой
  • Правила и процедура проведения егэ Сколько времени длится егэ по английскому
  • Продажа квартиры: кто обычно оплачивает оформление документов
  • Рейтинг самых истеричных знаков зодиака 3 самых истеричных знака зодиака
  • Формулы простейших уравнений. Как решать тригонометрические уравнения

    Формулы простейших уравнений. Как решать тригонометрические уравнения

    С центром в точке A .
    α - угол, выраженный в радианах.

    Определение
    Синус (sin α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.

    Косинус (cos α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

    Принятые обозначения

    ;
    ;
    .

    ;
    ;
    .

    График функции синус, y = sin x

    График функции косинус, y = cos x


    Свойства синуса и косинуса

    Периодичность

    Функции y = sin x и y = cos x периодичны с периодом 2 π .

    Четность

    Функция синус - нечетная. Функция косинус - четная.

    Область определения и значений, экстремумы, возрастание, убывание

    Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

    y = sin x y = cos x
    Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
    Область значений -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
    Возрастание
    Убывание
    Максимумы, y = 1
    Минимумы, y = -1
    Нули, y = 0
    Точки пересечения с осью ординат, x = 0 y = 0 y = 1

    Основные формулы

    Сумма квадратов синуса и косинуса

    Формулы синуса и косинуса от суммы и разности



    ;
    ;

    Формулы произведения синусов и косинусов

    Формулы суммы и разности

    Выражение синуса через косинус

    ;
    ;
    ;
    .

    Выражение косинуса через синус

    ;
    ;
    ;
    .

    Выражение через тангенс

    ; .

    При , имеем:
    ; .

    При :
    ; .

    Таблица синусов и косинусов, тангенсов и котангенсов

    В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

    Выражения через комплексные переменные


    ;

    Формула Эйлера

    Выражения через гиперболические функции

    ;
    ;

    Производные

    ; . Вывод формул > > >

    Производные n-го порядка:
    { -∞ < x < +∞ }

    Секанс, косеканс

    Обратные функции

    Обратными функциями к синусу и косинусу являются арксинус и арккосинус , соответственно.

    Арксинус, arcsin

    Арккосинус, arccos

    Использованная литература:
    И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

    Вы можете заказать подробное решение вашей задачи !!!

    Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

    Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

    1. Уравнение `sin x=a`.

    При `|a|>1` не имеет решений.

    При `|a| \leq 1` имеет бесконечное число решений.

    Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

    2. Уравнение `cos x=a`

    При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

    При `|a| \leq 1` имеет бесконечное множество решений.

    Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

    Частные случаи для синуса и косинуса в графиках.

    3. Уравнение `tg x=a`

    Имеет бесконечное множество решений при любых значениях `a`.

    Формула корней: `x=arctg a + \pi n, n \in Z`

    4. Уравнение `ctg x=a`

    Также имеет бесконечное множество решений при любых значениях `a`.

    Формула корней: `x=arcctg a + \pi n, n \in Z`

    Формулы корней тригонометрических уравнений в таблице

    Для синуса:
    Для косинуса:
    Для тангенса и котангенса:
    Формулы решения уравнений, содержащих обратные тригонометрические функции:

    Методы решения тригонометрических уравнений

    Решение любого тригонометрического уравнения состоит из двух этапов:

    • с помощью преобразовать его до простейшего;
    • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

    Рассмотрим на примерах основные методы решения.

    Алгебраический метод.

    В этом методе делается замена переменной и ее подстановка в равенство.

    Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

    `2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

    делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

    находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

    1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

    2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

    Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

    Разложение на множители.

    Пример. Решить уравнение: `sin x+cos x=1`.

    Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя , преобразуем и разложим на множители левую часть:

    `sin x — 2sin^2 x/2=0`,

    `2sin x/2 cos x/2-2sin^2 x/2=0`,

    `2sin x/2 (cos x/2-sin x/2)=0`,

    1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
    2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

    Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

    Приведение к однородному уравнению

    Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

    `a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

    Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

    Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

    Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

    `2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

    `2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

    `sin^2 x+sin x cos x — 2 cos^2 x=0`.

    Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

    `\frac {sin^2 x}{cos^2 x}+\frac{sin x cos x}{cos^2 x} — \frac{2 cos^2 x}{cos^2 x}=0`

    `tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

    1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
    2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

    Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

    Переход к половинному углу

    Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

    Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

    `4 tg^2 x/2 — 11 tg x/2 +6=0`

    Применив описанный выше алгебраический метод, получим:

    1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
    2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

    Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

    Введение вспомогательного угла

    В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:

    `\frac a{sqrt {a^2+b^2}} sin x +` `\frac b{sqrt {a^2+b^2}} cos x =` `\frac c{sqrt {a^2+b^2}}`.

    Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a{sqrt {a^2+b^2}}=cos \varphi`, ` \frac b{sqrt {a^2+b^2}} =sin \varphi`, `\frac c{sqrt {a^2+b^2}}=C`, тогда:

    `cos \varphi sin x + sin \varphi cos x =C`.

    Подробнее рассмотрим на следующем примере:

    Пример. Решить уравнение: `3 sin x+4 cos x=2`.

    Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:

    `\frac {3 sin x} {sqrt {3^2+4^2}}+` `\frac{4 cos x}{sqrt {3^2+4^2}}=` `\frac 2{sqrt {3^2+4^2}}`

    `3/5 sin x+4/5 cos x=2/5`.

    Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

    `cos \varphi sin x+sin \varphi cos x=2/5`

    Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

    `sin (x+\varphi)=2/5`,

    `x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

    `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

    Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

    Дробно-рациональные тригонометрические уравнения

    Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

    Пример. Решить уравнение. `\frac {sin x}{1+cos x}=1-cos x`.

    Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

    `\frac {sin x}{1+cos x}=` `\frac {(1-cos x)(1+cos x)}{1+cos x}`

    `\frac {sin x}{1+cos x}=` `\frac {1-cos^2 x}{1+cos x}`

    `\frac {sin x}{1+cos x}=` `\frac {sin^2 x}{1+cos x}`

    `\frac {sin x}{1+cos x}-` `\frac {sin^2 x}{1+cos x}=0`

    `\frac {sin x-sin^2 x}{1+cos x}=0`

    Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

    Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

    1. `sin x=0`, `x=\pi n`, `n \in Z`
    2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

    Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

    Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

    Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

    Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.


    Примеры:

    \(2\sin{⁡x} = \sqrt{3}\)
    tg\({3x}=-\) \(\frac{1}{\sqrt{3}}\)
    \(4\cos^2⁡x+4\sin⁡x-1=0\)
    \(\cos⁡4x+3\cos⁡2x=1\)

    Как решать тригонометрические уравнения:

    Любое тригонометрическое уравнение нужно стремиться свести к одному из видов:

    \(\sin⁡t=a\), \(\cos⁡t=a\), tg\(t=a\), ctg\(t=a\)

    где \(t\) – выражение с иксом, \(a\) – число. Такие тригонометрические уравнения называются простейшими . Их легко решать с помощью () или специальных формул:


    Инфографику о решении простейших тригонометрических уравнений смотри здесь: , и .

    Пример . Решите тригонометрическое уравнение \(\sin⁡x=-\)\(\frac{1}{2}\).
    Решение:

    Ответ: \(\left[ \begin{gathered}x=-\frac{π}{6}+2πk, \\ x=-\frac{5π}{6}+2πn, \end{gathered}\right.\)\(k,n∈Z\)

    Что означает каждый символ в формуле корней тригонометрических уравнений смотри в .

    Внимание! Уравнения \(\sin⁡x=a\) и \(\cos⁡x=a\) не имеют решений, если \(a ϵ (-∞;-1)∪(1;∞)\). Потому что синус и косинус при любых икс больше или равны \(-1\) и меньше или равны \(1\):

    \(-1≤\sin x≤1\) \(-1≤\cos⁡x≤1\)

    Пример . Решить уравнение \(\cos⁡x=-1,1\).
    Решение: \(-1,1<-1\), а значение косинуса не может быть меньше \(-1\). Значит у уравнения нет решения.
    Ответ : решений нет.


    Пример . Решите тригонометрическое уравнение tg\(⁡x=1\).
    Решение:

    Решим уравнение с помощью числовой окружности. Для этого:
    1) Построим окружность)
    2) Построим оси \(x\) и \(y\) и ось тангенсов (она проходит через точку \((0;1)\) параллельно оси \(y\)).
    3) На оси тангенсов отметим точку \(1\).
    4) Соединим эту точку и начало координат - прямой.
    5) Отметим точки пересечения этой прямой и числовой окружности.
    6)Подпишем значения этих точек: \(\frac{π}{4}\) ,\(\frac{5π}{4}\)
    7) Запишем все значения этих точек. Так как они находятся друг от друга на расстоянии ровно в \(π\), то все значения можно записать одной формулой:

    Ответ: \(x=\)\(\frac{π}{4}\) \(+πk\), \(k∈Z\).

    Пример . Решите тригонометрическое уравнение \(\cos⁡(3x+\frac{π}{4})=0\).
    Решение:


    Опять воспользуемся числовой окружностью.
    1) Построим окружность, оси \(x\) и \(y\).
    2) На оси косинусов (ось \(x\)) отметим \(0\).
    3) Проведем перпендикуляр к оси косинусов через эту точку.
    4) Отметим точки пересечения перпендикуляра и окружности.
    5) Подпишем значения этих точек: \(-\)\(\frac{π}{2}\),\(\frac{π}{2}\) .
    6)Выпишем все значение этих точек и приравняем их к косинуса (к тому что внутри косинуса).

    \(3x+\)\(\frac{π}{4}\) \(=±\)\(\frac{π}{2}\) \(+2πk\), \(k∈Z\)

    \(3x+\)\(\frac{π}{4}\) \(=\)\(\frac{π}{2}\) \(+2πk\) \(3x+\)\(\frac{π}{4}\) \(=-\)\(\frac{π}{2}\) \(+2πk\)

    8) Как обычно в уравнениях будем выражать \(x\).
    Не забывайте относиться к числам с \(π\), так же к \(1\), \(2\), \(\frac{1}{4}\) и т.п. Это такие же числа, как и все остальные. Никакой числовой дискриминации!

    \(3x=-\)\(\frac{π}{4}\) \(+\)\(\frac{π}{2}\) \(+2πk\) \(3x=-\)\(\frac{π}{4}\) \(+\)\(\frac{π}{2}\) \(+2πk\)
    \(3x=\)\(\frac{π}{4}\) \(+2πk\) \(|:3\) \(3x=-\)\(\frac{3π}{4}\) \(+2πk\) \(|:3\)
    \(x=\)\(\frac{π}{12}\) \(+\)\(\frac{2πk}{3}\) \(x=-\)\(\frac{π}{4}\) \(+\)\(\frac{2πk}{3}\)

    Ответ: \(x=\)\(\frac{π}{12}\) \(+\)\(\frac{2πk}{3}\) \(x=-\)\(\frac{π}{4}\) \(+\)\(\frac{2πk}{3}\) , \(k∈Z\).

    Сводить тригонометрические уравнения к простейшим – задача творческая, тут нужно использовать и , и особые методы решений уравнений:
    - Метод (самый популярный в ЕГЭ).
    - Метод .
    - Метод вспомогательных аргументов.


    Рассмотрим пример решения квадратно-тригонометрического уравнения

    Пример . Решите тригонометрическое уравнение \(2\cos^2⁡x-5\cos⁡x+2=0\)
    Решение:

    \(2\cos^2⁡x-5\cos⁡x+2=0\)

    Сделаем замену \(t=\cos⁡x\).

    Наше уравнение превратилось в типичное . Можно его решить с помощью .

    \(D=25-4 \cdot 2 \cdot 2=25-16=9\)

    \(t_1=\)\(\frac{5-3}{4}\) \(=\)\(\frac{1}{2}\) ; \(t_2=\)\(\frac{5+3}{4}\) \(=2\)

    Делаем обратную замену.

    \(\cos⁡x=\)\(\frac{1}{2}\); \(\cos⁡x=2\)

    Первое уравнение решаем с помощью числовой окружности.
    Второе уравнение не имеет решений т.к. \(\cos⁡x∈[-1;1]\) и двум быть равен не может ни при каких иксах.

    Запишем все числа, лежащие на в этих точках.

    Ответ: \(x=±\)\(\frac{π}{3}\) \(+2πk\), \(k∈Z\).

    Пример решения тригонометрического уравнения с исследованием ОДЗ:

    Пример(ЕГЭ) . Решите тригонометрическое уравнение \(=0\)

    \(\frac{2\cos^2⁡x-\sin{⁡2x}}{ctg x}\) \(=0\)

    Есть дробь и есть котангенс – значит надо записать . Напомню, что котангенс это фактически дробь:

    ctg\(x=\)\(\frac{\cos⁡x}{\sin⁡x}\)

    Потому ОДЗ для ctg\(x\): \(\sin⁡x≠0\).

    ОДЗ: ctg\(x ≠0\); \(\sin⁡x≠0\)

    \(x≠±\)\(\frac{π}{2}\) \(+2πk\); \(x≠πn\); \(k,n∈Z\)

    Отметим «нерешения» на числовой окружности.

    \(\frac{2\cos^2⁡x-\sin{⁡2x}}{ctg x}\) \(=0\)

    Избавимся в уравнении от знаменателя, умножив его на ctg\(x\). Мы можем это сделать, так как выше написали, что ctg\(x ≠0\).

    \(2\cos^2⁡x-\sin⁡{2x}=0\)

    Применим формулу двойного угла для синуса: \(\sin⁡{2x}=2\sin⁡x\cos⁡x\).

    \(2\cos^2⁡x-2\sin⁡x\cos⁡x=0\)

    Если у вас руки потянулись поделить на косинус – одерните их! Делить на выражение с переменной можно если оно точно не равно нулю (например, такие: \(x^2+1,5^x\)). Вместо этого вынесем \(\cos⁡x\) за скобки.

    \(\cos⁡x (2\cos⁡x-2\sin⁡x)=0\)

    «Расщепим» уравнение на два.

    \(\cos⁡x=0\); \(2\cos⁡x-2\sin⁡x=0\)

    Первое уравнение с решим с помощью числовой окружности. Второе уравнение поделим на \(2\) и перенесем \(\sin⁡x\) в правую часть.

    \(x=±\)\(\frac{π}{2}\) \(+2πk\), \(k∈Z\). \(\cos⁡x=\sin⁡x\)

    Корни, которые получились не входят в ОДЗ. Поэтому их в ответ записывать не будем.
    Второе уравнение типичное . Поделим его на \(\sin⁡x\) (\(\sin⁡x=0\) не может быть решением уравнения т.к. в этом случаи \(\cos⁡x=1\) или \(\cos⁡x=-1\)).

    Опять используем окружность.


    \(x=\)\(\frac{π}{4}\) \(+πn\), \(n∈Z\)

    Эти корни не исключаются ОДЗ, поэтому можно их записывать в ответ.

    Ответ: \(x=\)\(\frac{π}{4}\) \(+πn\), \(n∈Z\).

    Понятия синуса, косинуса, тангенса и котангенса являются основными категориями тригонометрии — раздела математики, и неразрывно связаны с определением угла. Владение этой математической наукой требует запоминания и понимания формул и теорем, а также развитого пространственного мышления. Именно поэтому у школьников и студентов тригонометрические вычисления нередко вызывают трудности. Чтобы побороть их, следует подробнее познакомиться с тригонометрическими функциями и формулами.

    Понятия в тригонометрии

    Чтобы разобраться в базовых понятиях тригонометрии, следует сначала определиться с тем, что такое прямоугольный треугольник и угол в окружности, и почему именно с ними связаны все основные тригонометрические вычисления. Треугольник, в котором один из углов имеет величину 90 градусов, является прямоугольным. Исторически эта фигура часто использовалась людьми в архитектуре, навигации, искусстве, астрономии. Соответственно, изучая и анализируя свойства этой фигуры, люди пришли к вычислению соответствующих соотношений её параметров.

    Основные категории, связанные с прямоугольными треугольниками — гипотенуза и катеты. Гипотенуза — сторона треугольника, лежащая против прямого угла. Катеты, соответственно, это остальные две стороны. Сумма углов любых треугольников всегда равна 180 градусам.

    Сферическая тригонометрия — раздел тригонометрии, который не изучается в школе, однако в прикладных науках типа астрономии и геодезии, учёные пользуются именно им. Особенность треугольника в сферической тригонометрии в том, что он всегда имеет сумму углов более 180 градусов.

    Углы треугольника

    В прямоугольном треугольнике синусом угла является отношение катета, противолежащего искомому углу, к гипотенузе треугольника. Соответственно, косинус — это отношение прилежащего катета и гипотенузы. Оба эти значения всегда имеют величину меньше единицы, так как гипотенуза всегда длиннее катета.

    Тангенс угла — величина, равная отношению противолежащего катета к прилежащему катету искомого угла, или же синуса к косинусу. Котангенс, в свою очередь, это отношение прилежащего катета искомого угла к противолежащему кактету. Котангенс угла можно также получить, разделив единицу на значение тангенса.

    Единичная окружность

    Единичная окружность в геометрии — окружность, радиус которой равен единице. Такая окружность строится в декартовой системе координат, при этом центр окружности совпадает с точкой начала координат, а начальное положение вектора радиуса определено по положительному направлению оси Х (оси абсцисс). Каждая точка окружности имеет две координаты: ХХ и YY, то есть координаты абсцисс и ординат. Выбрав на окружности любую точку в плоскости ХХ, и опустив с неё перпендикуляр на ось абсцисс, получаем прямоугольный треугольник, образованный радиусом до выбранной точки (обозначим её буквой С), перпендикуляром, проведённым до оси Х (точка пересечения обозначается буквой G), а отрезком оси абсцисс между началом координат (точка обозначена буквой А) и точкой пересечения G. Полученный треугольник АСG — прямоугольный треугольник, вписанный в окружность, где AG — гипотенуза, а АС и GC — катеты. Угол между радиусом окружности АС и отрезком оси абсцисс с обозначением AG, определим как α (альфа). Так, cos α = AG/AC. Учитывая, что АС — это радиус единичной окружности, и он равен единице, получится, что cos α=AG. Аналогично, sin α=CG.

    Кроме того, зная эти данные, можно определить координату точки С на окружности, так как cos α=AG, а sin α=CG, значит, точка С имеет заданные координаты (cos α;sin α). Зная, что тангенс равен отношению синуса к косинусу, можно определить, что tg α = y/х, а ctg α = х/y. Рассматривая углы в отрицательной системе координат, можно рассчитать, что значения синуса и косинуса некоторых углов могут быть отрицательными.

    Вычисления и основные формулы


    Значения тригонометрических функций

    Рассмотрев сущность тригонометрических функций через единичную окружность, можно вывести значения этих функций для некоторых углов. Значения перечислены в таблице ниже.

    Простейшие тригонометрические тождества

    Уравнения, в которых под знаком тригонометрической функции присутствует неизвестное значение, называются тригонометрическими. Тождества со значением sin х = α, k — любое целое число:

    1. sin х = 0, х = πk.
    2. 2. sin х = 1, х = π/2 + 2πk.
    3. sin х = -1, х = -π/2 + 2πk.
    4. sin х = а, |a| > 1, нет решений.
    5. sin х = а, |a| ≦ 1, х = (-1)^k * arcsin α + πk.

    Тождества со значением cos х = а, где k — любое целое число:

    1. cos х = 0, х = π/2 + πk.
    2. cos х = 1, х = 2πk.
    3. cos х = -1, х = π + 2πk.
    4. cos х = а, |a| > 1, нет решений.
    5. cos х = а, |a| ≦ 1, х = ±arccos α + 2πk.

    Тождества со значением tg х = а, где k — любое целое число:

    1. tg х = 0, х = π/2 + πk.
    2. tg х = а, х = arctg α + πk.

    Тождества со значением ctg х = а, где k — любое целое число:

    1. ctg х = 0, х = π/2 + πk.
    2. ctg х = а, х = arcctg α + πk.

    Формулы приведения

    Эта категория постоянных формул обозначает методы, с помощью которых можно перейти от тригонометрических функций вида к функциям аргумента, то есть привести синус, косинус, тангенс и котангенс угла любого значения к соответствующим показателям угла интервала от 0 до 90 градусов для большего удобства вычислений.

    Формулы приведения функций для синуса угла выглядят таким образом:

    • sin(900 — α) = α;
    • sin(900 + α) = cos α;
    • sin(1800 — α) = sin α;
    • sin(1800 + α) = -sin α;
    • sin(2700 — α) = -cos α;
    • sin(2700 + α) = -cos α;
    • sin(3600 — α) = -sin α;
    • sin(3600 + α) = sin α.

    Для косинуса угла:

    • cos(900 — α) = sin α;
    • cos(900 + α) = -sin α;
    • cos(1800 — α) = -cos α;
    • cos(1800 + α) = -cos α;
    • cos(2700 — α) = -sin α;
    • cos(2700 + α) = sin α;
    • cos(3600 — α) = cos α;
    • cos(3600 + α) = cos α.

    Использование вышеуказанных формул возможно при соблюдении двух правил. Во-первых, если угол можно представить как значение (π/2 ± a) или (3π/2 ± a), значение функции меняется:

    • с sin на cos;
    • с cos на sin;
    • с tg на ctg;
    • с ctg на tg.

    Значение функции остаётся неизменным, если угол может быть представлен как (π ± a) или (2π ± a).

    Во-вторых, знак приведенной функции не изменяется: если он изначально был положительным, таким и остаётся. Аналогично с отрицательными функциями.

    Формулы сложения

    Эти формулы выражают величины синуса, косинуса, тангенса и котангенса суммы и разности двух углов поворота через их тригонометрические функции. Обычно углы обозначаются как α и β.

    Формулы имеют такой вид:

    1. sin(α ± β) = sin α * cos β ± cos α * sin.
    2. cos(α ± β) = cos α * cos β ∓ sin α * sin.
    3. tg(α ± β) = (tg α ± tg β) / (1 ∓ tg α * tg β).
    4. ctg(α ± β) = (-1 ± ctg α * ctg β) / (ctg α ± ctg β).

    Эти формулы справедливы для любых величин углов α и β.

    Формулы двойного и тройного угла

    Тригонометрические формулы двойного и тройного угла — это формулы, которые связывают функции углов 2α и 3α соответственно, с тригонометрическими функциями угла α. Выводятся из формул сложения:

    1. sin2α = 2sinα*cosα.
    2. cos2α = 1 — 2sin^2 α.
    3. tg2α = 2tgα / (1 — tg^2 α).
    4. sin3α = 3sinα — 4sin^3 α.
    5. cos3α = 4cos^3 α — 3cosα.
    6. tg3α = (3tgα — tg^3 α) / (1-tg^2 α).

    Переход от суммы к произведению

    Учитывая, что 2sinx*cosy = sin(x+y) + sin(x-y), упростив эту формулу, получаем тождество sinα + sinβ = 2sin(α + β)/2 * cos(α − β)/2. Аналогично sinα — sinβ = 2sin(α — β)/2 * cos(α + β)/2; cosα + cosβ = 2cos(α + β)/2 * cos(α − β)/2; cosα — cosβ = 2sin(α + β)/2 * sin(α − β)/2; tgα + tgβ = sin(α + β) / cosα * cosβ; tgα — tgβ = sin(α — β) / cosα * cosβ; cosα + sinα = √2sin(π/4 ∓ α) = √2cos(π/4 ± α).

    Переход от произведения к сумме

    Эти формулы следуют из тождеств перехода суммы в произведение:

    • sinα * sinβ = 1/2*;
    • cosα * cosβ = 1/2*;
    • sinα * cosβ = 1/2*.

    Формулы понижения степени

    В этих тождествах квадратную и кубическую степени синуса и косинуса можно выразить через синус и косинус первой степени кратного угла:

    • sin^2 α = (1 — cos2α)/2;
    • cos^2 α = (1 + cos2α)/2;
    • sin^3 α = (3 * sinα — sin3α)/4;
    • cos^3 α = (3 * cosα + cos3α)/4;
    • sin^4 α = (3 — 4cos2α + cos4α)/8;
    • cos^4 α = (3 + 4cos2α + cos4α)/8.

    Универсальная подстановка

    Формулы универсальной тригонометрической подстановки выражают тригонометрические функции через тангенс половинного угла.

    • sin x = (2tgx/2) * (1 + tg^2 x/2), при этом х = π + 2πn;
    • cos x = (1 — tg^2 x/2) / (1 + tg^2 x/2), где х = π + 2πn;
    • tg x = (2tgx/2) / (1 — tg^2 x/2), где х = π + 2πn;
    • ctg x = (1 — tg^2 x/2) / (2tgx/2), при этом х = π + 2πn.

    Частные случаи

    Частные случаи простейших тригонометрических уравнений приведены ниже (k — любое целое число).

    Частные для синуса:

    Значение sin x Значение x
    0 πk
    1 π/2 + 2πk
    -1 -π/2 + 2πk
    1/2 π/6 + 2πk или 5π/6 + 2πk
    -1/2 -π/6 + 2πk или -5π/6 + 2πk
    √2/2 π/4 + 2πk или 3π/4 + 2πk
    -√2/2 -π/4 + 2πk или -3π/4 + 2πk
    √3/2 π/3 + 2πk или 2π/3 + 2πk
    -√3/2 -π/3 + 2πk или -2π/3 + 2πk

    Частные для косинуса:

    Значение cos x Значение х
    0 π/2 + 2πk
    1 2πk
    -1 2 + 2πk
    1/2 ±π/3 + 2πk
    -1/2 ±2π/3 + 2πk
    √2/2 ±π/4 + 2πk
    -√2/2 ±3π/4 + 2πk
    √3/2 ±π/6 + 2πk
    -√3/2 ±5π/6 + 2πk

    Частные для тангенса:

    Значение tg x Значение х
    0 πk
    1 π/4 + πk
    -1 -π/4 + πk
    √3/3 π/6 + πk
    -√3/3 -π/6 + πk
    √3 π/3 + πk
    -√3 -π/3 + πk

    Частные для котангенса:

    Значение ctg x Значение x
    0 π/2 + πk
    1 π/4 + πk
    -1 -π/4 + πk
    √3 π/6 + πk
    -√3 -π/3 + πk
    √3/3 π/3 + πk
    -√3/3 -π/3 + πk

    Теоремы

    Теорема синусов

    Существует два варианта теоремы — простой и расширенный. Простая теорема синусов: a/sin α = b/sin β = c/sin γ. При этом, a, b, c — стороны треугольника, и α, β, γ — соответственно, противолежащие углы.

    Расширенная теорема синусов для произвольного треугольника: a/sin α = b/sin β = c/sin γ = 2R. В этом тождестве R обозначает радиус круга, в который вписан заданный треугольник.

    Теорема косинусов

    Тождество отображается таким образом: a^2 = b^2 + c^2 — 2*b*c*cos α. В формуле a, b, c — стороны треугольника, и α — угол, противолежащий стороне а.

    Теорема тангенсов

    Формула выражает связь между тангенсами двух углов, и длиной сторон, им противолежащих. Стороны обозначены как a, b, c, а соответствующие противолежащие углы — α, β, γ. Формула теоремы тангенсов: (a — b) / (a+b) = tg((α — β)/2) / tg((α + β)/2).

    Теорема котангенсов

    Связывает радиус вписанной в треугольник окружности с длиной его сторон. Если a, b, c — стороны треугольника, и А, В, С, соответственно, противолежащие им углы, r — радиус вписанной окружности, и p — полупериметр треугольника, справедливы такие тождества:

    • ctg A/2 = (p-a)/r;
    • ctg B/2 = (p-b)/r;
    • ctg C/2 = (p-c)/r.

    Прикладное применение

    Тригонометрия — не только теоретическая наука, связанная с математическими формулами. Её свойствами, теоремами и правилами пользуются на практике разные отрасли человеческой деятельности — астрономия, воздушная и морская навигация, теория музыки, геодезия, химия, акустика, оптика, электроника, архитектура, экономика, машиностроение, измерительные работы, компьютерная графика, картография, океанография, и многие другие.

    Синус, косинус, тангенс и котангенс — основные понятия тригонометрии, с помощью которых математически можно выразить соотношения между углами и длинами сторон в треугольнике, и найти искомые величины через тождества, теоремы и правила.

    При решении многих математических задач , особенно тех, которые встречаются до 10 класса, порядок выполняемых действий, которые приведут к цели, определен однозначно. К таким задачам можно отнести, например, линейные и квадратные уравнения, линейные и квадратные неравенства, дробные уравнения и уравнения, которые сводятся к квадратным. Принцип успешного решения каждой из упомянутых задач заключается в следующем: надо установить, к какому типу относится решаемая задача, вспомнить необходимую последовательность действий, которые приведут к нужному результату, т.е. ответу, и выполнить эти действия.

    Очевидно, что успех или неуспех в решении той или иной задачи зависит главным образом от того, насколько правильно определен тип решаемого уравнения, насколько правильно воспроизведена последовательность всех этапов его решения. Разумеется, при этом необходимо владеть навыками выполнения тождественных преобразований и вычислений.

    Иная ситуация получается с тригонометрическими уравнениями. Установить факт того, что уравнение является тригонометрическим, совсем нетрудно. Сложности появляются при определении последовательности действий, которые бы привели к правильному ответу.

    По внешнему виду уравнения порой бывает трудно определить его тип. А не зная типа уравнения, почти невозможно выбрать из нескольких десятков тригонометрических формул нужную.

    Чтобы решить тригонометрическое уравнение, надо попытаться:

    1. привести все функции входящие в уравнение к «одинаковым углам»;
    2. привести уравнение к «одинаковым функциям»;
    3. разложить левую часть уравнения на множители и т.п.

    Рассмотрим основные методы решения тригонометрических уравнений.

    I. Приведение к простейшим тригонометрическим уравнениям

    Схема решения

    Шаг 1. Выразить тригонометрическую функцию через известные компоненты.

    Шаг 2. Найти аргумент функции по формулам:

    cos x = a; x = ±arccos a + 2πn, n ЄZ.

    sin x = a; x = (-1) n arcsin a + πn, n Є Z.

    tg x = a; x = arctg a + πn, n Є Z.

    ctg x = a; x = arcctg a + πn, n Є Z.

    Шаг 3. Найти неизвестную переменную.

    Пример.

    2 cos(3x – π/4) = -√2.

    Решение.

    1) cos(3x – π/4) = -√2/2.

    2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

    3x – π/4 = ±3π/4 + 2πn, n Є Z.

    3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

    x = ±3π/12 + π/12 + 2πn/3, n Є Z;

    x = ±π/4 + π/12 + 2πn/3, n Є Z.

    Ответ: ±π/4 + π/12 + 2πn/3, n Є Z.

    II. Замена переменной

    Схема решения

    Шаг 1. Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций.

    Шаг 2. Обозначить полученную функцию переменной t (если необходимо, ввести ограничения на t).

    Шаг 3. Записать и решить полученное алгебраическое уравнение.

    Шаг 4. Сделать обратную замену.

    Шаг 5. Решить простейшее тригонометрическое уравнение.

    Пример.

    2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

    Решение.

    1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

    2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

    2) Пусть sin (x/2) = t, где |t| ≤ 1.

    3) 2t 2 + 5t + 3 = 0;

    t = 1 или е = -3/2, не удовлетворяет условию |t| ≤ 1.

    4) sin (x/2) = 1.

    5) x/2 = π/2 + 2πn, n Є Z;

    x = π + 4πn, n Є Z.

    Ответ: x = π + 4πn, n Є Z.

    III. Метод понижения порядка уравнения

    Схема решения

    Шаг 1. Заменить данное уравнение линейным, используя для этого формулы понижения степени:

    sin 2 x = 1/2 · (1 – cos 2x);

    cos 2 x = 1/2 · (1 + cos 2x);

    tg 2 x = (1 – cos 2x) / (1 + cos 2x).

    Шаг 2. Решить полученное уравнение с помощью методов I и II.

    Пример.

    cos 2x + cos 2 x = 5/4.

    Решение.

    1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

    2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

    3/2 · cos 2x = 3/4;

    2x = ±π/3 + 2πn, n Є Z;

    x = ±π/6 + πn, n Є Z.

    Ответ: x = ±π/6 + πn, n Є Z.

    IV. Однородные уравнения

    Схема решения

    Шаг 1. Привести данное уравнение к виду

    a) a sin x + b cos x = 0 (однородное уравнение первой степени)

    или к виду

    б) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (однородное уравнение второй степени).

    Шаг 2. Разделить обе части уравнения на

    а) cos x ≠ 0;

    б) cos 2 x ≠ 0;

    и получить уравнение относительно tg x:

    а) a tg x + b = 0;

    б) a tg 2 x + b arctg x + c = 0.

    Шаг 3. Решить уравнение известными способами.

    Пример.

    5sin 2 x + 3sin x · cos x – 4 = 0.

    Решение.

    1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

    5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

    sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

    2) tg 2 x + 3tg x – 4 = 0.

    3) Пусть tg x = t, тогда

    t 2 + 3t – 4 = 0;

    t = 1 или t = -4, значит

    tg x = 1 или tg x = -4.

    Из первого уравнения x = π/4 + πn, n Є Z; из второго уравнения x = -arctg 4 + πk, k Є Z.

    Ответ: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

    V. Метод преобразования уравнения с помощью тригонометрических формул

    Схема решения

    Шаг 1. Используя всевозможные тригонометрические формулы, привести данное уравнение к уравнению, решаемому методами I, II, III, IV.

    Шаг 2. Решить полученное уравнение известными методами.

    Пример.

    sin x + sin 2x + sin 3x = 0.

    Решение.

    1) (sin x + sin 3x) + sin 2x = 0;

    2sin 2x · cos x + sin 2x = 0.

    2) sin 2x · (2cos x + 1) = 0;

    sin 2x = 0 или 2cos x + 1 = 0;

    Из первого уравнения 2x = π/2 + πn, n Є Z; из второго уравнения cos x = -1/2.

    Имеем х = π/4 + πn/2, n Є Z; из второго уравнения x = ±(π – π/3) + 2πk, k Є Z.

    В итоге х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

    Ответ: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

    Умения и навыки решать тригонометрические уравнения являются очень важными, их развитие требует значительных усилий, как со стороны ученика, так и со стороны учителя.

    С решением тригонометрических уравнений связаны многие задачи стереометрии, физики, и др. Процесс решения таких задач как бы заключает в себе многие знания и умения, которые приобретаются при изучении элементов тригонометрии.

    Тригонометрические уравнения занимают важное место в процессе обучения математики и развития личности в целом.

    Остались вопросы? Не знаете, как решать тригонометрические уравнения?
    Чтобы получить помощь репетитора – зарегистрируйтесь .
    Первый урок – бесплатно!

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.