Войти
Автомобильный портал - Двигатель. Замена свечей. Подсветка. Права и вождение
  • Тартария – история исчезнувшего государства Нет фактов — не было Директивы
  • Проектная работа на тему: " Древнейшие виды письменности"
  • Реферат: История развития письменности
  • Зимнее и летнее время: как после одной безобидной шутки Европа начала переводить часы
  • Как заболевают раком и что делать, чтобы избежать этого заболевания?
  • Вчера в церкви был парастас
  • Чем объяснить сходство между меркурием и луной. Двойник луны - меркурий

    Чем объяснить сходство между меркурием и луной. Двойник луны - меркурий

    ТЯГОТЕНИЕ МЕРКУРИЯ И ПРОБЛЕМА ВЕКОВОГО ДВИЖЕНИЯ ЕГО ПЕРИГЕЛИЯ

    А.А.Гришаев, независимый исследователь

    Введение.

    Научные знания о Меркурии существенно обогатились благодаря результатам работы космического зонда Маринер-10 (см., например, обзор ). В частности, радиоконтроль третьего пролёта Маринера-10 вблизи Меркурия дал кривую пролётного изменения скорости зонда из-за действия тяготения Меркурия . Эта кривая свидетельствует, на наш взгляд, о том, что тяготение Меркурия принципиально отличается от планетарного – и, по-видимому, оно организовано аналогично тяготению Луны .

    Тогда следует пересмотреть традиционное объяснение векового движения перигелия Меркурия. Дело в том, что если Меркурий имеет тяготение лунного типа, то движение перигелия Меркурия, обусловленное возмущениями от планет, представляет собой комбинацию только периодических компонент – поэтому вклад в вековое движение, которое традиционно приписывают возмущениям от планет (527² ), требует иного объяснения.

    Ниже мы предлагаем объяснение, которое основано на наших представлениях о тяготении.

    Маринер-10 и тяготение Меркурия.

    Зонд Маринер-10 был запущен 3 ноября 1973 г., а 4 февраля 1974 г. он прошёл рядом с Венерой. При этом был впервые выполнен пролётный гравитационный манёвр в поле тяготения планеты. В результате вектор скорости зонда довернулся к Солнцу – в расчёте на это оказалось возможным уменьшить скорость вылета из сферы действия Земли более чем на 1 км/с по сравнению со случаем свободного полёта к Меркурию . Первый пролёт вблизи Меркурия состоялся 29 марта 1974 г. Далее зонд вышел на эллиптическую околосолнечную орбиту с периодом обращения, в два раза большим орбитального периода Меркурия. Таким образом, ожидалось ещё несколько встреч зонда с Меркурием – в том же месте.

    При первом пролёте, в точке наибольшего сближения зонда с Меркурием, расстояние до его поверхности составило 706 км . Но часть времени прохождения зонда вблизи Меркурия, включая точку наибольшего сближения, пришлась на интервал, когда Меркурий закрывал собой зонд – т.е. когда радиосвязь с ним отсутствовала. При втором пролёте, минимальное расстояние до поверхности составило слишком большую величину, около 47000 км, и проявление тяготения Меркурия не обнаружилось. При третьем же пролёте зонд находился в пределах прямой видимости с Земли, а минимальное расстояние до поверхности Меркурия составило 327 км – полученные на этот раз данные слежения наиболее информативны. Мы воспроизводим диаграмму, которая показывает изменение допплеровского сдвига при слежении за фазой несущей (» 2100 МГц) на третьем пролёте . На этой диаграмме хорошо виден «провал» в скорости зонда на величину ~ 0.6 км/с. Такой «провал», при приближении зонда «из бесконечности» на расстояние 327 км к поверхности Меркурия – имеющего радиус » 2439 км – соответствует, согласно закону всемирного тяготения, массе Меркурия, которая меньше массы Солнца в (6023700± 300) раз .

    Между тем, если тяготение Меркурия было бы организовано по тем же принципам, что и тяготение планет, то изменение допплеровского сдвига имело бы другой вид. Как мы постарались показать в предыдущих статьях, ряд опытных фактов свидетельствует о том, что действие на пробные тела тяготений Солнца и планет разграничено в пространстве: в

    области действия планетарного тяготения, солнечное тяготение «отключено» . При пересечении космическим аппаратом границы между областями действия планетарного и солнечного тяготений, происходит переход из одной зоны «инерциального пространства» в другую, т.е. происходит скачок локально-абсолютной скорости аппарата. Соответственно, порождается скачок допплеровского сдвига при радиосвязи с ним – этот непредвиденный феномен привёл к потере целого ряда советских и американских космических аппаратов на первых подлётах к Венере и Марсу . Движение Маринера-10 при третьем пролёте вблизи Меркурия происходило почти вдоль луча зрения с Земли – и если тяготение Меркурия имело бы планетарный тип, то влёт зонда в область действия этого тяготения, а также вылет из этой области, сопровождались бы скачками допплеровского сдвига, соответствующими изменениям скорости на несколько километров в секунду. Но на приведённой выше диаграмме эти два пограничных скачка с очевидностью отсутствуют.

    Аналогичная аномальная ситуация имеет место в случае с Луной: при пересечении космическим аппаратом границы области действия собственного тяготения Луны, не обнаруживается скачка допплеровского сдвига при радиосвязи с ним. Поэтому логично предположить, что собственное тяготение Меркурия организовано аналогично тому, как оно организовано у Луны – наши представления об аномальном тяготении Луны изложены в . Следствия организации тяготения Меркурия по лунному типу, в частности, таковы:

    а) собственное тяготение Меркурия действует на пробные тела лишь в относительно небольшой прилегающей к Меркурию области;

    б) несмотря на наличие собственного тяготения, Меркурий движется вокруг Солнца как болванка, которая притягивается к Солнцу, но не вызывает у него ответной динамической реакции;

    в) Меркурий не притягивает планеты и не притягивается ими, т.е. Меркурий не вызывает возмущений в движении планет; движение же самого Меркурия возмущается планетами лишь через динамическую реакцию Солнца на планеты.

    Эти следствия несколько непривычны – как и наше базовое утверждение о том, что тяготение порождается не веществом – но, насколько нам известно, они не противоречат наблюдательным данным, касающимся движения больших тел в Солнечной системе.

    Проблема векового движения перигелия Меркурия.

    Согласно закону всемирного тяготения, все большие тела Солнечной системы попарно притягивают друг друга и, таким образом, они должны возмущать движение друг друга. В частности, воздействия планет на Меркурий должны приводить к наличию вековой компоненты движения его перигелия. Расчёт, принципы которого вкратце изложены, например, в , даёт для увеличения долготы перигелия Меркурия, которое обусловлено возмущениями от планет, величину » 527² за столетие . Если учесть также т.н. прецессию , обусловленную предварением равноденствий, т.е. медленным обратным вращением самой системы небесных координат, то в итоговом вековом смещении перигелия Меркурия ещё остаётся значительный «сухой остаток». Леверрье получил для этого остатка величину около 38² за столетие и трактовал его просто как эмпирическую поправку . Ньюком, стремясь наилучшим образом согласовать теорию с движением всех четырёх внутренних планет, изменил на малую величину показатель степени в ньютоновском законе обратных квадратов; такой подход позволил «объяснить» остаток в движении перигелия Меркурия в 43² .37 за столетие . Наконец, Эйнштейн, на основе общей теории относительности (ОТО), получил поправку в движение перицентра, выражение для которой, за один орбитальный оборот, имеет вид :

    D p = 24 p 3 a 2 /c 2 T 2 (1-e 2), (1)

    где a - большая полуось орбиты, c - скорость света, T - период обращения по орбите, e - её эксцентриситет. Для случая Меркурия эта поправка составила 43² .03 за столетие. Принято считать, что проблема векового движении перигелия Меркурия решена именно Эйнштейном.

    Но, на наш взгляд, эйнштейновский подход не выдерживает критики. Мало того, что выражение (1) теряет физический смысл при стремлении эксцентриситета к нулю – давая ненулевое смещение перицентра даже для случая круговой орбиты . У выражения (1) имеется и более серьёзный недостаток. А именно, наличие в этом выражении константы c однозначно свидетельствует: оно получено на основе постулата о том, что скорость действия тяготения равна скорости света в вакууме. Но ведь уже Лапласу были известны экспериментальные свидетельства о том, что нижнее ограничение на скорость действия тяготения превышает скорость света в вакууме на 7 порядков . Современные же экспериментальные методики, в частности, приём импульсов пульсаров, позволили увеличить эту цифру до 11 порядков . Таким образом, об ограниченности скорости действия тяготения скоростью света в вакууме не может быть и речи. Поэтому эйнштейновский подход к проблеме движения перигелия Меркурия является заведомо некорректным, и проблема остаётся нерешённой.

    Попробуем решить её на основе тезиса о том, что собственное тяготение Меркурия организовано не таким образом, как у планеты, а таким, как у Луны. В этом случае, как отмечалось выше, планеты не притягивают Меркурий: планеты притягивают Солнце и друг друга , но они не притягивают болванку, находящуюся за пределами областей действия планетарных тяготений. Возмущения от планет в движение такой болванки проявляются лишь через динамическую реакцию Солнца на планеты. Эта динамическая реакция заключается в соответствующей «болтанке» солнечной частотной воронки , что приводит к периодическим «ускорениям сноса» у болванки, движущейся по солнечным частотным склонам . Результирующее смещение перигелия Меркурия, как следует из теории слабо возмущённого движения спутника , должно представлять собой всего лишь сумму периодических компонент – без векового смещения. Тогда вклад в движение перигелия Меркурия, равный 527² за столетие, должен быть обусловлен не возмущениями от планет, а какой-то другой причиной – и, значит, нам необходимо объяснить фактическое движение перигелия Меркурия, составляющее 527² +43² =570² за столетие.

    Причина такого движения перигелия Меркурия, на наш взгляд, может заключаться в следующем. Организация тяготения по лунному типу означает, что в области действия тяготения Меркурия солнечное тяготение не «отключено». Меркурий не покоится в собственной частотной воронке, как планета, а движется по солнечному частотному склону, и поэтому локально-абсолютные скорости элементов объёма Меркурия имеют составляющую, равную его орбитальной скорости. Поскольку Меркурий имеет также вращение вокруг собственной оси, то сложение этого собственного вращения с орбитальным движением создаёт в объёме Меркурия градиенты локально-абсолютных скоростей. Эти градиенты локально-абсолютных скоростей, в свою очередь, порождают безопорное силовое воздействие на Меркурий, направленное от Солнца. Действительно, как мы постарались показать в , спутник, движущийся по орбите с тангенциальной скоростью V при радиус-векторе R , и испытывающий собственное вращение с угловой скоростью w , вектор которой сонаправлен с вектором орбитальной угловой скорости, имеет приращение центробежного ускорения

    D a R ~ 4V w r /R , (2)

    где r – характерный радиус спутника. Как следует из теории движения спутника с непрерывной малой тягой , положительное радиальное ускорение D a R приводит к медленному вращению линии апсид в сторону орбитального движения; за один оборот по орбите с малым эксцентриситетом происходит смещение перицентра на угол

    q » 2 p D a R /(GM/R 2), (3)

    где GM – гравитационный параметр силового центра, т.е. произведение гравитационной постоянной на его массу. На основе (2) и (3), для векового движения перигелия Меркурия получаем:

    q 100 » 8 p N h cos a V w Rr /GM , (4)

    где N » 415 – число орбитальных оборотов Меркурия за сто лет, h » 0.5 – геометрический фактор, cos a » 1 - косинус угла наклона экватора к орбите, V – средняя орбитальная скорость Меркурия, w - угловая скорость его собственного вращения, R – средний радиус орбиты Меркурия, r – его радиус, M – масса Солнца. Непосредственный расчёт по формуле (4) даёт q 100 » 67000² , т.е. значение, на два порядка большее фактической цифры 570² . Но это несоответствие устраняется, если допустить, что Меркурий представляет собой не сплошное тело, а тонкостенную оболочку – по аналогии с Луной, экспериментальные свидетельства о тонкостенности которой приведены, например, в . Если Меркурий действительно является пустотелой оболочкой с толщиной D r , то в формуле (4) следует заменить радиус r на толщину D r . И тогда, зная фактическую величину векового движения перигелия Меркурия, возможно оценить толщину его оболочки, которая оказывается равной примерно 21 км.

    Эта цифра не представляется нам абсурдной – даже в связи с проблемой обеспечения достаточной прочности сферической оболочки с радиусом 2439 км и с толщиной, на два порядка меньшей. Эта проблема не так велика, как представляется на первый взгляд – если, как мы уже отмечали для случая Луны , собственное тяготение Меркурия действует в его окрестностях и лишь в тонком приповерхностном слое грунта. Тогда подавляющая часть вещества Меркурия подвержена действию лишь солнечного тяготения и, находясь в орбитальном околосолнечном движении, пребывает в состоянии, близком к невесомости. Кстати, на экваторе Меркурия обнаружилась огромная особенность – т.н. котловина Калорис, с диаметром 1300 км . Нам не удалось найти данных о глубине этой котловины, причём на фотомозаике, сделанной из снимков Маринера-10, центральная часть этой котловины теряется во мраке. Мы не исключаем того, что в центральной части котловины Калорис имеется сквозное отверстие в оболочке Меркурия. Надеемся, что этот вопрос будет прояснён с помощью запущенного к Меркурию зонда «Мессенджер».

    Меркурий – несостоявшийся спутник Венеры?

    Усомниться в правильности традиционного мнения о том, что Меркурий является планетой, позволяет поразительное сходство Меркурия с Луной. Это сходство заключается не только в сопоставимости их размеров. Ещё до запуска Маринера-10, благодаря наблюдениям с Земли, было известно, что поверхность Меркурия «отражает электромагнитное излучение на всех длинах волн точно таким же образом, как и Луна (принимая во внимание разницу в их удалениях от Солнца) » . «Оптические и термоэмиссионные свойства Меркурия (альбедо, фотометрическая функция, поляризация, спектральные характеристики, тепловая инерция и т.д.) были измерены с Земли и оказались, фактически, идентичными лунным » . Сходство спектральных характеристик Меркурия с лунными позволило сделать вывод о том, что «поверхность Меркурия покрыта луноподобным реголитом – стеклообразным, обогащённым железом и титаном » , причём обнаружились также небольшие различия в спектрах тех или иных регионов, аналогичные различиям в спектрах лунных материков и морей. Все эти выводы были подтверждены и ещё более детализированы измерениями с борта Маринера-10. Кроме того, фотографии Меркурия, сделанные Маринером-10, показали, что рельеф поверхности Меркурия также весьма схож с лунным – как на больших масштабах (материки, моря, кольцевые горы), так и на малых (кратеры). Даже специалисты иногда затруднялись различить, какие фотографии изображали участок поверхности Луны, а какие – участок поверхности Меркурия.

    При таком сходстве Меркурия и Луны, вполне логично выглядит наше предположение о том, что и тяготение Меркурия организовано аналогично тому, как оно организовано у Луны, т.е. иначе, чем в случае планеты – тем более что это предположение обосновано данными радиоконтроля за полётом Маринера-10 (см. выше). На основе этого предположения мы пришли к тому, что Меркурий и Луна, по-видимому, имеют ещё одно общее свойство: они представляют собой не сплошные тела, а пустотелые тонкостенные оболочки.

    С учётом вышеизложенного, едва ли следует считать Меркурий полноценной планетой. Орбита Меркурия имеет аномально большой эксцентриситет (0.206) и аномально большое наклонение к эклиптике (7° ); и не нова идея о том, что Меркурий является бывшим спутником Венеры. К сожалению, автор этой идеи нам неизвестен. Среди специалистов, которые являются сторонниками этой идеи, называют, например, Ван Фландерна и Харрингтона (см. ).

    Движение перигелия Меркурия и ОТО.

    Первым считается обнаружение Эддингтоном гравитационного отклонения света, проходящего вблизи Солнца – по заметным во время солнечного затмения смещениям видимых положений звёзд. Эддингтон ограничился устным заявлением о верности ОТО, но не опубликовал ни анализа погрешностей, ни полученных им фотографий, ни методики отбраковки тех из них, которые были расценены как «плохие». Сама идея подобных измерений представляется нам бессмысленной: свет, формирующий изображения звёзд, прежде проходит через нестационарную солнечную корону, из-за чего изображения могут смещаться в произвольном направлении и на произвольную величину. Но даже в идеализированном случае, т.е. при отсутствии этих произвольных смещений изображений, эксперимент Эддингтона был обречён на бездоказательность. В статье , написанной специалистом по практической астрономии, приведён подробный анализ инструментальных и методических погрешностей в эксперименте Эддингтона. Этот анализ с очевидностью показывает, что «в данном эксперименте измеряемая величина находилась глубоко под ошибками измерения… вывод о правильности ОТО, основанный на результатах этой экспедиции, является неправомерным и принципиально некорректным » .

    Вторым подтверждением ОТО считается обнаружение «гравитационного красного смещения», т.е. изменения частоты света при его распространении в изменяющемся гравитационном потенциале. Паунд и Ребка полагали, что с помощью мёссбауэровской спектроскопии они обнаружили именно сдвиг частоты, который приобретают гамма-кванты при вертикальном движении. Но, как следует из той же ОТО, если источник и поглотитель гамма-квантов – с изначально совпадающими линиями – разнести на разные высоты, то их линии уже не будут совпадать: разность составит, в относительном исчислении, ту же самую величину, что и величина «гравитационного красного смещения». Если, при наличии этого несовпадения линий излучения и поглощения, ещё и гамма-кванты изменяли бы свою частоту при вертикальном движении, то измеряемый эффект у Паунда и Ребки был бы удвоенный – а он был одинарный. В дальнейшем, в экспериментах с перевозимыми атомными часами выяснилось, что гравитационные сдвиги энергетических уровней в веществе, несомненно, происходят. Но это означает, что гравитационные сдвиги частоты у квантов света отсутствуют , т.е. второе опытное подтверждение ОТО – в изначальной формулировке – также оказывается несостоятельным. Положение не спасает даже уточнённая формулировка: о том, что ОТО предсказывает «гравитационное замедление времени». Такое фундаментальное явление, как замедление времени, приводило бы – при равных условиях – к одинаковым относительным сдвигам частот у генераторов всех типов. Но известно, что гравитационные сдвиги у квантовых стандартов частоты имеют место, а у прецизионных кварцевых – нет ; значит, о «гравитационном замедлении времени» не может быть и речи.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Далекие “Земли”

    Характеристика Меркурия

    Наблюдения ученых за планетой Меркурий

    Рельеф поверхности Меркурия

    Меркурий - мир жара и холода

    1. Далекие “Земли”

    С древнейших времен люди знали те особые светила на небе, которые называются планетами. По внешнему виду они похожи на звезды, но отличаются от них тем, что непрерывно кочуют по небу, перемещаясь из одного созвездия к другому. Пути их сложны. Если нарисовать на звездной карте путь какой-нибудь планеты, то получится линия с какими-то непрерывными петлями и изгибами. Планета движется сначала справа налево все вперед и вперед. Потом останавливается и помедлив, поворачивает назад. Пройдя немного в обратную сторону, она снова направляется вперед, и движется все быстрее и быстрее до новой остановки.

    Древние ученые настойчиво стремились разгадать это странное движение планет, но не смогли этого сделать. Мы теперь знаем, что их попытки были неудачны потому, что они ошибочно считали Землю неподвижным центром всего мироздания.

    Солнце вместе с планетами спутниками планет составляет солнечную или планетную систему. Путь каждой планеты приблизительно окружность, по которой эта планета обходит Солнце. У каждой планеты есть свой путь, или своя Орбита, как говорят астрономы.

    Чем ближе планета к Солнцу, тем меньше ее орбита, тем короче тот путь, который ей приходится пробегать. Кроме того, близкая от Солнца планета движется по своему пути быстрее, чем далекая, поэтому и время оборота планеты вокруг Солнца тем короче, чем ближе она к Солнцу.

    Заметив планеты очень давно, люди придумали для них названия, которые сохранились до наших дней. Не понимая действительной причины движения планет, люди объясняли планет желаниями и капризами тех богов и богинь из религиозных сказок - мифов. Так попали на страницы современных научных книг по астрономии такие имена древнеримских богов, как Меркурий - бог торговли, Венера - богиня красоты, Марс - бог войны и др.

    2. Меркурий и его данные

    Меркурий, самая близкая к Солнцу планета солнечной системы, астрономический знак.Среди больших планет имеет наименьшие размеры: ее диаметр 4865 км (0,38 диаметра Земли), масса 3,304*10 23 кг (0,055 массы Земли или 1:6025000 массы Солнца); средняя плотность 5,52 г/см 3 . Меркурий принадлежит к планетам земной группы.

    Меркурий движется вокруг Солнца в среднем на расстоянии 0,384 астрономические единицы (58 млн. км) по эллиптической орбите с большим эксцентриситетом е-0,206; в перигелии расстояние до Солнца составляет 46 млн.км., а в афелии 70 млн. км. Период обращения Меркурия вокруг Солнца равен 88 суткам. Лишь в 60-х гг. с помощью радиолокационных наблюдений было установлено, что Меркурий вращается вокруг оси в прямом направлении (т.е. как и в орбитальном движении) с периодом 58,65 суток (относительно звезд). Продолжительность Солнечных суток на Меркурии составляет 176 дней. Угловая скорость осевого вращения Меркурия составляет3/2 орбитального и соответствует угловой скорости его движения в орбите, когда планета находится в перигелии. На основании этого можно предположить, что скорость вращения Меркурия обусловлена приливными силами со стороны Солнца.

    Для наблюдения с Земли Меркурий - трудный объект, так как он видимым образом никогда не удаляется от Солнца больше чем на 23 о, вследствие чего Меркурий приходится наблюдать всегда на фоне вечернее или утренней зари низко над горизонтом. Кроме того, в эту пору фаза планеты (т.е. угол при планете между направлениями на Солнце и на Землю) близка к 90 0 и наблюдатель видит освещенной лишь половину ее диска. По этой причине на поверхности Меркурия зафиксированы лишь крупные темные пятна неизвестной природы и карта его построена в самых общих чертах. Экватор Меркурия наклонен к плоскости его орбиты на 7 0 . При наблюдениях в элонгации (в наибольшем угловом удалении от Солнца) Меркурий имеет блеск от - 0,3 до +0,6 звездной величины. Изменения блеска с фазой у Меркурия протекает сходно с Луной. Что указывает на одинаковый характер неровностей у этих небесных тел, но отражательная способность Меркурия хуже, чем у Луны: она подобна лунным морям. Его сферическое альбедо равно: визуальное 0,058, тепловое 0,09. Определенное радиолокационным путем в дециметровом диапазоне радиоволн поперечное сечение диска Меркурия составляет всего лишь 0,06 от геометрического.

    Меркурий, возможно, лишен атмосферы, хотя поляризационные и спектральные наблюдения указывают на наличие слабой атмосферы. Признаки углекислого газа СО 2 наблюдались на Меркурии спектральным путем. Самый верхний предел его содержания 4 г/см 2 . Сюда может примешиваться азот N 2 или аргон Ar, не обнаружены спектроскопически при наблюдении с Земли. Содержание этих газов может быть в несколько раз выше, чем СО 2 . В верхней атмосфере Меркурия углекислый газ должен диссоциировать под воздействием сильного ультрафиолетового облучения со стороны Солнца на СО, О, О 2 . Здесь атомы и молекулы могут легко уходить в межпланетное пространство, т.к. вторая космическая скорость на Меркурии очень невелика 4,3 км/сек.

    Расчетная средняя температура Меркурия (найденная в предположении, что планета столько же излучает тепла сколько получает его от Солнца) на среднем расстоянии от Солнца 505К. Для точки поверхности Меркурия, где Солнце видно в зените (т.к. подсолнечная точка) вычисленная температура 618К, а фактически измеренная 613 К. Это температура увеличивается до 400К, когда Меркурий находится в перигелии и опускается до 500К в афелии. Измеренное с большими трудностями инфракрасное излучение с неосвещенной части Меркурия приводит к значению ночной температуры Меркурия около 110К. Возможно, что она несколько выше, но вряд ли выше 150К. При изменении теплового потока Меркурия в радиодиапазоне обнаруживаются в среднем (по диску) температуры до 400К в сантиметровом диапазоне, 300-400К на миллиметровых и дециметровых волнах. Но эти измерения относятся не к сомой поверхности, а к некоторому (неглубокому) уровню под ней, что подтверждается также отсутствием заметного эффекта фазы в измеряемых тепловых потоках. Сопоставление с потоками, измеренными в инфракрасном диапазоне, позволяет вывести значение коэффицента температуропроводиости µ=1/500-1/700, что соответствует аналогичным значениям для Луны. Предполагается, что Меркурий состоит из железного (по-видимому, жидкого) ядра, содержащего 0,62 всей массы, окруженного силикатной оболочкой. С помощью “Маринера-10” было установлено присутствие у Меркурия сильно разряженной газовой оболочки, состоящей главным образом из гелия. Давление у поверхности планеты примерно в 500 млрд. раз меньше, чем у поверхности Земли. Эта атмосфера состоит в динамическом равновесии: каждый атом гелия находится в ней около 200 дней, после чего покидает планету, его же место занимает другая частица из плазмы солнечного ветра. Оказалось также, что Меркурий обладает слабым магнитным полем, напряженность которого составляет всего 0,7% земного. Наклон оси диполя к оси вращения Меркурия 12 0 (у Земли 11 0)

    3. Наблюдения ученых за планетой Меркурий.

    Меркурий - четвертая по блеску планета: в максимуме она почти так же ярка, как Сириус, ярче же бывают только Венера, Марс, Юпитер. Тем не менее Меркурий очень трудная для наблюдения планета из-за малости его орбиты и, следовательно, близости к Солнцу; его наибольшая элонгация (видимое угловое расстояние от Солнца) составляет 28 0 . В том самом благоприятном для наблюдения положении фаза Меркурия соответствует фазе Луны в первой и третьей четвертях; полная фаза приходится на верхнее соединение, когда находится за Солнцем почти на одной прямой с ним. После захода Солнца перед его восходом Меркурий на небе всегда находится очень близко к Солнцу, что ограничивает ночные наблюдения планеты коротким интервалом. Кроме того, турбулентность нашей атмосферы на низких высотах обуславливает плохое изображение. Поэтому Меркурий наблюдают большей частью при полном дневном свете, а рассеянный дневной свет исключают в минимально возможной мере применением соответствующих экранов. Вследствие всех этих разного рода трудностей только самым упорным наблюдателям удавалось обнаружить детали на поверхности Меркурия. Склапарелли (Италия, 1833-1910) и Барнард (США, 1857-1923) - два великих наблюдателя - сделали зарисовки инертных деталей поверхности, причем эти зарисовки не слишком хорошо согласуются между собой. Поскольку фотографии Луны показали, что некоторые детали, в особенности лучи, а до некоторой степени и моря, становятся особенно заметными в полнолуния, весьма интересно отметить, что Барнард охарактеризовал пятна на Меркурии в основном как похожие на лунные “моря”, а Склапарели получил свои наилучшие результаты, когда планета была близка к полной фазе, т.е. находилась по соседству с Солнцем.

    На протяжении длительного времени Меркурий наблюдался во Франции - сначала Антониади в Медоне, а позднее Дольфюсом на Пик де Мидея. Все наблюдатели согласны, что Меркурий медленно вращается вокруг своей оси, будучи всегда обрашенным к Солнцу одной стороной, если не считать не больших либраций. Таким образом, период вращения Меркурия, составляющий 88 суток, согласно Дольфюсу, равен с точностью до 1/10000 сидерическому периоду обращения планеты вокруг Солнца. Так как Солнце освещает только одну сторону планеты, Склапарелли и Антониаде наблюдали Меркурий вечером, а Дольфюс утром. Чтобы сравнить карты Склапарелли и Антониаде с картой Дельфюса, их следует повернуть примерно на 15 О. Дельфюс полагает, что наблюдаемые детали можно привести к совпадению, считая, что угол наклона экватора Меркурия к эклиптике равен 7 О.

    Поскольку оптическая разрешающая способность составляет приблизительно О”,3, т.е.1/13-1/20 видимого диаметра Меркурия, на рисунках, очевидно, представлены почти все детали, которые когда либо наблюдались с поверхности Земли.

    Сравнение всех трех карт Меркурия на первый взгляд наводит на мысль, что наблюдатели расходятся в своих наблюдениях, но более тщательная проверка выявляет согласие в наиболее существенных чертах. Два человека никогда не нарисуют плохо видимый объект одинаково. Чтобы убедиться в этом важном для наблюдательной астрономии факте, поместите одну из этих карт на таком расстоянии, чтобы детали были едва различны, и зарисуйте, что вы видите. Сравнение рисунка с оригиналом может дать удивительные результаты. Несомненно, поверхность Меркурия во многом сходна с поверхностью Луны, хотя мы и не знаем, действительно ли на поверхности Меркурия имеются моря и кратеры. Однако среднее визуальное альбедо Меркурия (0,14) вдвое больше, чем альбедо Луны.

    Попытки доказать существование у Меркурия атмосферы в основном давали отрицательные результаты, хотя иногда наблюдатели высказывали подозрение, что легкие беловатые облачка затуманивали более темные пятна. Скорость убегания для Меркурия составляет всего 3,7 км/сек, а температура на его поверхности может быть гораздо более высокой - выше, чем для Луны. Следовательно, лишь самые теплые газы могли бы остаться на поверхности планеты. Точно также, выбрасываемые во время солнечных бурь частицы, должны, даже в большей степени, чем в случае Луны, вышибать атомы остаточной атмосферы Меркурия. Когда Меркурий наблюдается в виде серпа, то его рога не выходят за пределы их геометрических граней, что указывает на отсутствие сколько-нибудь значительных сумеречных эффектов - рассеяния или рефракции в атмосфере. Однако Дельфюс считает, что свет рогов характеризуется небольшой избыточной поляризацией. Если этот эффект обусловлен наличием атмосферы, то последняя в целом составляет не более 1/300 атмосферы Земли. Петтит (обсерватории Маунт Вилеон и Маунт Баломар) из инфракрасных измерений Меркурия нашел, что температура в подсолнечной точке в перигелии сильно возрастает, достигая 415 О С; в афелии она составляет около 285 О С. При 415 О С плавится олово и свинец; даже цинк находится близ своей точки плавления (419 О С). Поэтому Меркурий даже с большим основанием, чем Плутон, мог быть назван в честь бога преисподней.

    В противоположность очень высоким значениям температуры, на стороне Меркурия, обращенной к Солнцу, на вечно темной ее стороне температура очень низкая. Тепло может проникать туда только через твердое тело планеты, посредством теплопроводности, а это процесс крайне медленный, или же посредством конвенции в остатках атмосферы, но последнее можно лишь предполагать. Температура не освещенного полушария, вероятно не превышает 10 О, считая от абсолютного нуля, т.е. там даже холоднее, чем на Плутоне. Таким образом, Меркурий проявляет своего рода “раздвоение личности”, совмещая в себе обе крайности значений температуры планет. Интересно знать, не могут ли оказаться захваченными и замороженными на темной стороне такие газы, как азот, углерод, углекислый газ, кислород и другое. Для ответа на этот вопрос требуется более строгая проверка при помощи космических зондов и радиолокационных наблюдений.

    На очень большое сходство между Меркурием и Луной указывают их размеры, характер вращения, разряженность атмосферы и внешний вид. Оба этих тела практически одинаково отражают свет, как в отношении цвета, так и в отношении интенсивности при различных углах отражения. Лучи света, падающие перпендикулярно к поверхности, отражаются в направлении падения достаточно эффективно, но при падении света под большими углами отражение бывает очень слабым. Даже поляризация или плоскость колебаний отраженного света для Меркурия и Луны одинакова. Все это дает нам право сделать вывод, что поверхность Меркурия сходна с поверхностью Луны, как в отношении отдельных деталей, так и в целом. Несомненно, поверхность Меркурия неправильной формы и неровная.

    Средняя плотность Меркурия, хотя она определена не слишком точно, по-видимому, почти в 5,5 раза выше плотности воды, т.е. примерно равна плотности Земли. Так как масса Меркурия мала, то увеличение его плотности, вследствие сжатия, ограничено величиной 1-2%, а средняя плотность основных составляющих его материалов, если извлечь их из планеты, согласно подсчетам Юри составит 5,4 вместо 4,4 для Земли. Следовательно, доля более тяжелых элементов для Меркурия должна быть вполне измеримое железное ядро. В этом отношении Меркурий сильно отличается от Луны и, по существу, является самым плотным телом значительных размеров в солнечной системе. Эволюционный процесс, в результате которого возникла высокая плотность, пока еще не вполне понятен, но, несомненно, он связан с близостью Меркурия к Солнцу.

    4. Рельеф поверхности Меркурия

    С пролетной траектории космического аппарата “Маинер-10” в 1974 г. было сфотографировано свыше 40% поверхности Меркурия с рзрешением от 4 мм до 100 м, что позволило увидеть Меркурий примерно так же, как Луну в темноте с Земли. Обилие кратеров - наиболее очевидная черта его поверхности, которую по-первому впечатлению можно уподобить Луне. И не случайно даже специалисты - селенологи, которым показали эти снимки вскоре после их получения приняли их за фотографии с Луны.

    Действительно, морфология кратеров близка к лунной, их ударное происхождение не вызывает сомнений: у большинства виден очерченный вал следы выбросов раздробленного при ударе материала с образованием в ряде случаев характерных ярких лучей и поле вторичных кратеров. У многих кратеров различима центральная горка и террасная структура внутреннего склона. Интересно, что такими особенностями обладают не только практически все крупные кратеры диаметром свыше 40-70 км, но и значительно большее число кратеров меньших размеров, в пределах 5-70 км (конечно, речь здесь идет о хорошо сохранившихся кратерах). Эти особенности можно отвести как на счет большей кинетической энергии тел, выпадавших на поверхность, так и на счет самого материала поверхности.

    Степень эрозии и сглаживание кратеров различна. Например, хорошо заметные лучевые структуры говорят о том, что она невелика, в то же время у ряда кратеров сохранились едва заметные кромки. В целом меркурианские кратеры по сравнению с лунными менее глубокие, что также можно объяснить большей кинетической энергией метеоритов из-за большего, чем на Луне ускорения силы тяжести на Меркурии. Поэтому образующий при ударе кратер эффективнее заполняется выбрасываемым материалом. По этой же причине вторичные кратеры расположены ближе к центральному, чем на Луне, и отложения раздробленного материала в меньшей степени маскируют первичные формы рельефа. Сами вторичные кратеры глубже лунных, что опять же объясняется тем, что выпадающие на поверхность осколки испытывают большее ускорение силы тяжести.

    Так же, как и на Луне, можно в зависимости от рельефа выделить преобладающие неровные “материковые” и значительно более гладкие “морские” районы. Последние преимущественно представляют собой котловины, которых, однако, существенно меньше, чем на Луне, их размеры обычно не превышают 400-600 км. К тому же, некоторые котловины слабо различимы на фоне окружающего рельефа. Исключение составляет упоминавшаяся обширная котловина Канорис (Море Жары) протяженностью около 1300 км, напоминающая известное Море Дождей на Луне. Возможно, что имеются и другие подобные котловины на оставшейся пока не отснятой большей части поверхности планеты. Морфология обрамляющих валов, поля вторичных кратеров, структура поверхности внутри котловины Канорис дают основания предполагать, что при ее формировании было выброшено больше материала, чем при образовании Моря Дождей, и что в дальнейшем могли последовательно происходить процессы дополнительного проседания и поднятия дна, связанные с возможным оттоком магмы и изостатическим выравниванием.

    В преобладающей материковой части поверхности Меркурия можно выделить как сильно кратеризированные районы, с наибольшей степенью деградации кратеров, так и занимающие обширные территории старые межкратерные плоскогорья, свидетельствующие о широко развитом древнем вулканизме. Это наиболее древние сохранившиеся формы рельефа планеты. Равнинные районы морей и примыкающих к ним участков сформировались в более позднюю эпоху. Об этом можно судить по слабой насыщенности равнин относительно небольших размеров. Выровненные поверхности котловин, очевидно, покрыты наиболее толстым слоем раздробленных пород - реголита. Наряду с небольшим числом кратеров здесь встречаются складчатые гребки, напоминающие лунные. Некоторые из примыкающих к котловинам равнинных участков, вероятно образовались при отложений выброшенного из них материала. Вместе с тем для большинства равнин найдены вполне определенные свидетельства их вулканического происхождения, однако это вулканизм более позднего времени, чем на межкратерных плоскогорьях. Создается впечатление, что по своей морфологии и возрасту эти райны Меркурия примерно аналогичны районам лунных морей и равнинных поверхностей Марса, образование которых обычно датируется периодом на рубеже около 3-4 млрд. лет назад. К этому периоду относят завершение этапа наилее интенсивной бомбардировки планет крупными телами, в результате чего и образовались “моря” и другие крупные, иногда менее четко проявляющиеся кратеры.

    Если теперь сопоставить количество больших котловин и кратеров диаметром более 200 км на Меркурии, Луне и Марсе, то оказывается, что их плотность приблизительно обратно пропорционально площади поверхностей этих небесных тел, в то время как их поперечники отличаются всего вдвое. Отсюда следует, что число метеоритов в областях пространства, занимаемого этими планетами, могло быть примерно одинаковым. Понять это не так просто, как может показаться на первый взгляд. Ведь обычно исходят из представлений о том, что основным регуляторным источником метеоритов, “поставляемых” во внутренние области солнечной системы, служит астероидный пояс, а планеты находятся от него на разных расстояниях. Однако если принять во внимание, что помимо этого основного источника могут быть и другие подобные скопления астероидных тел за орбитой Плутона, также выполняющие функции “поставщиков” метеоритов, различие в расположении ближайших к Солнцу планет становится несущественным. Такое предположение кажется более вероятным, нежили приходящие на помощь в подобных случаях разнообразные “катастрофические” гипотезы. Известным американским ученым Г.Везеримом для объяснения наблюдаемых закономерностей была предложена гипотеза о катастрофическом разрушении астероида под действием приливных сил при его прохождении вблизи Земли и Венеры и последующего выпадания осколков. Осколки могли бы тогда распределиться в пределах области расположения планет земной группы приблизительно равномерно. При всей внешней привлекательности такого сценария нелишне, по-видимому, вспомнить философско-методологический принцип, согласно которому не надо изобретать сущности сверх необходимых. Другими словами, не надо привлекать экзотических объяснений, если можно ограничиться более простыми. Анализируя основные черты поверхности Меркурия мы обращали внимание как на многие сходства, так и на существенные различия с Луной. Внимательное изучение обнаруживает еще одну интереснейшую особенность, проливающую свет на историю формирования планеты. Речь идет о характерных следах тектонической активности в глобальном масштабе в виде специфических крутых уступов, или откосов-эскарпов. Эскарпы имеют протяженность от 20-500 км и высоту склонов от нескольких сотен метров до 1-2 км. По своей морфологии и геометрии расположения на поверхности они отличаются от обычны тектонических разрывов и сбросов, наблюдаемых на Луне и Марсе, и скорее образовались за счет надвигов, наслоений вследствие напряжения в поверхностном слое, возникших при сжатии Меркурия. Об этом свидетельствует горизонтальное смещение валов некоторых кратеров.

    Некоторые из эскарпов подверглись ударной бомбардировке и частично разрушены. Это означает, что они образовались раньше, чем кратеры на их поверхности. По сжении эрозии этих кратеров можно прийти к заключению, что сжатие коры происходило в период образования “морей” около 4 млрд. лет назад. Наиболее вероятной причиной сжатия нужно, видимо, считать начало остывания Меркурия. Согласно другому интересному предположению, выдвинутому рядом специалистов, альтернативным механизмом мощной тектонической активности планеты в этот период могло быть приливное замедление вращения планеты примерно в 175 раз: от первоначально предполагаемого значения около 8 часов до 58,6 суток! Действительно, ряд хребтов, гилобов, линейчатых сегментов валов и эскарпов обладает преимущественной ориентацией в меридиональном направлении, с небольшим отклонением к западу и востоку, что как будто благоприятствует гипотезе. Вместе с тем нельзя исключить и того, что эти черты поверхности запечатлели внутренне напряжение в коре планеты под воздействием приливных возмущений от Солнца, игравших особенно важную роль при образовании таких структур в процессе сжатия Меркурия.

    5. Меркурий - мир жара и холода

    Меркурий- яркое светило, но увидеть его на небе не так просто. Дело, в том, что, находясь вблизи Солнца, Меркурий всегда виден для нас недалеко от солнечного диска, отход от него то влево (к востоку), то вправо (к западу) только на небольшое расстояние, которое не превосходит 28 О. Поэтму его можно увидеть только в те дни года, когда он отходит от Солнца на самое большое расстояние. Пусть, например, Меркурий отодвинулся от Солнца влево. Солнц и все светила в своем суточном движении плывут по небу слева направо. Поэтому сначала заходит Солнце, а через час с небольшим заходит Меркурий, и надо искать эту планету низко над Западным горизонтом.

    Если рассматривать Меркурий в сильный телескоп, то вместо звездочки он будет выглядеть, как маленькая Луна, имея очертания либо узкого серпика, либо полукруга. Это происходит по той же причине, что и смена фаз Луны. Меркурий - это темный шар, собственного света он не дает и сияет на небе за счет отражения солнечных лучей. На той половине Меркурия, которая повернута к Солнцу, - день, а на другой - ночь. Мы видим только освещенную часть планеты. Диаметр Меркурия в 2 Ѕ раза меньше диаметра Земли и в Ѕ раза больше диаметра Луны.

    В сильный телескоп на Меркурии можно заметить темные пятна, имеющие примерно такой же вид, как “моря” Луны для невооруженного глаза. Наблюдая за этими пятнами, ученые установили одну важную особенность. Двигаясь по своему пути вокруг Солнца, Меркурий вместе с тем поворачивается вокруг своей оси так, что к Солнцу обращена всегда одна и таже его половина. Это значит, что на одной стороне Меркурия всегда день, а на другой - ночь.

    Меркурий гораздо ближе к Солнцу, чем Земля. Поэтому Солнце на нем светит и греет в 7 раз сильнее, чем у нас. На дневной стороне Меркурия страшно жарко, тем вечное пекло. Измерения показывают, что температура там поднимается до 400 О выше нуля. Зато на ночной стороне должен быть всегда сильный мороз, который, вероятно, доходит до 200 О и даже 250 О ниже нуля.

    На такой планете не может быть ни океанов, ни атмосферы. Действительно, самые тщательные наблюдения не обнаружили на Меркурии никаких признаков воздушной оболочки.

    Итак, Меркурий - это царство пустынь. Одна его половина - горячая каменная пустыня, другая половина - ледяная пустыня, быть может покрытая замерзшими газами.

    Использованная литература

    И.А. Климишин “астрономия наших дней”, Москва “Наука”, 1980 г.

    Ф.У.И.П.П.Л. “Земля, Луна и планеты”, Издательство “Наука”, 1967

    Большая советская энциклопедия. Издание второе. Москва 1978 г.

    М.Я. Маров “Планеты Солнечной системы”

    В.И.Морозов “Физика планет”.

    Подобные документы

      Изучение и анализ Меркурия как первой планеты в солнечной системе. Движение планеты и описание ее сущности и физических характеристик. Поверхность. Специфика атмосфера и физического поля планеты и их исследование. Колонизация Меркурия. Планета в цифрах

      реферат , добавлен 28.11.2008

      Наблюдение за планетой Меркурий невооруженным глазом и в телескоп. Влияние близости Меркурия к Солнцу на температуру его поверхности. Внутреннее устройство планеты, наличие атмосферы, магнитного поля, кратеров и "морей". Гипотеза о появлении Меркурия.

      реферат , добавлен 29.04.2013

      Ознакомление с строением Солнечной системы. Анализ научных данных и сведений по планетам земной группы. Рассмотрение особенностей Меркурия, Венеры, Земли и Марса. Изучение размеров, массы, температуры, периодов обращения вокруг оси и вокруг Солнца.

      реферат , добавлен 28.01.2015

      Исследование истории названия и общая характеристика Меркурия как самой близкой к Солнцу планеты Солнечной системы. Внутренний характер орбиты планеты Меркурий. История исследования, фотоснимки поверхности и основные физические характеристики планеты.

      презентация , добавлен 17.01.2012

      Физические и орбитальные характеристики, атмосфера, физические поля и история открытия Меркурия, особенности движения вокруг Солнца, сравнение с другими планетами системы. Исследования, посвященные наблюдениям за поверхностью планеты. Интересные факты.

      реферат , добавлен 29.04.2009

      Сущность понятия "космос". Направления использования космоса для потребностей человека: космическое производство и землеведение. Планеты солнечной системы. Меркурий как самая близкая к Солнцу планета. Венера как небесный близнец Земли. Атмосфера на Марсе.

      презентация , добавлен 05.10.2011

      Построение графика распределения официально известных планет. Определение точных расстояний до Плутона и заплутоновых планет. Формула вычисления скорости усадки Солнца. Зарождение планет Солнечной системы: Земли, Марса, Венеры, Меркурия и Вулкана.

      статья , добавлен 23.03.2014

      Общая характеристика планет Солнечной системы как наиболее массивных тел, движущихся по эллиптическим орбитам вокруг Солнца. Расположение планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Размеры и химический состав планет.

      презентация , добавлен 04.02.2011

      Строение Солнечной системы, внешние области. Происхождение естественных спутников планет. Общность газовых планет-гигантов. Характеристика поверхности, атмосферы, состава Меркурия, Сатурна, Венеры, Земли, Луна, Марса, Урана, Плутона. Пояса астероидов.

      реферат , добавлен 07.05.2012

      Планеты Солнечной системы, известные с древних времен и открытые недавно: Меркурий, Венера, Земля, Марс, планеты-гиганты Юпитер, Сатурн, Уран и Нептун. Происхождение их названий, расстояния от Солнца, размеры и массы, периоды обращения вокруг Солнца.

    Много веков среди астрономов бытовала поговорка: «Счастлив астроном, видевший Меркурий». Говорят, что этого счастья был лишен даже Коперник, которому за всю его долгую жизнь ни разу не удалось наблюдать Меркурий.

    Причина плохой видимости Меркурия общеизвестна: Меркурий близок к Солнцу. Только 58 млн. км отделяет эту планету от центрального тела нашей солнечной системы, что составляет около 2/s расстояния от Земли до Солнца. Впрочем, эта величина средняя. Благодаря сильной вытянутости орбиты Меркурий может иногда сближаться с Солнцем до 46 млн. км, между тем как в иные моменты его расстояние от Солнца возрастает до 70 млн. км.

    На небе Меркурий всегда находится в непосредственном соседстве с Солнцем и потому почти постоянно скрыт в его ослепительных лучах. Только при наиболее благоприятном стечении обстоятельств Меркурий удаляется от Солнца на 28 градусов, что составляет 56 видимых поперечников Луны. В такие периоды его иногда удается наблюдать в лучах утренней или вечерней зари как желтоватую сравнительно яркую звездочку.

    Новый этап в изучении Меркурия наступил лишь в 1974 г., когда американская межпланетная станция «Маринер-10» трижды пролетела вблизи Меркурия и передала на Землю многочисленные изображения поверхности планеты. Сходство с Луной оказалось поразительным. Лишь специалист-селенолог (да и то не всегда) сможет различить, какое именно космическое тело изображено на снимках - Луна или Меркурий.

    Выяснилось, что Меркурий вовсе не обращен к Солнцу всегда одной и той же стороной, как думали многие, а вращается вокруг оси с периодом 58 суток. Эта ось почти перпендикулярна к плоскости меркурианской орбиты, а так как сутки на Меркурии составляют почти 2/3 меркурианского года, видимое движение Солнца на Меркурии должно быть очень необычным. Сочетание двух движений приводит к тому, что в некоторых районах Меркурия восходы и заходы происходят дважды за сутки, причем как на востоке, так и на западе. Двигаясь по меркурианскому небу, Солнце иногда останавливается, затем идет вспять, а потом, как бы «одумавшись», продолжает прежнее движение.

    В полдень на экваторе Меркурия температура поднимается до 400-500 °С, а ночью падает до - 160°С. Такие резкие температурные контрасты объясняются почти полным отсутствием атмосферы. Строго говоря, «Маринер-10» обнаружил на Меркурии атмосферу, но плотность ее в 500 млрд. раз меньше плотности комнатного воздуха. Состоит она из гелия и водорода, атомы которых поставляет Солнце через «солнечный ветер» (т. е. потоки протонов и альфа-частиц, непрерывно выбрасываемых Солнцем). Заметим, что водорода в атмосфере Меркурия в 50 раз меньше, чем гелия, и вся эта сверхразреженная атмосфера находится в состоянии динамического равновесия: из-за малой силы тяготения атомы атмосферы постоянно теряются Меркурием, но на смену им из «солнечного ветра» поступают новые протоны, альфа-частицы и электроны.

    При внимательном изучении снимков Меркурия можно заметить, что его поверхность кое в чем все-таки отличается от лунной. Здесь, на Меркурии, почти всюду виден материковый рельеф и есть лишь одно «море», названное Морем Зноя. Есть на Меркурии и особые, не встречающиеся на Луне формы рельефа - так называемые эскарпы. Это обрывы высотой 2-3 км и длиной в сотни и тысячи километров, разделяющие два в целом ничем не отличающихся друг от друга участка поверхности. Создается впечатление, что такие сбросовые образования, вероятно, возникли при эволюционном сжатии Меркурия.

    Ряд фактов свидетельствует о том, что, как и Луна, Меркурий первоначально находился в очень горячем, расплавленном состоянии. На снимках Меркурия видны многочисленные следы излияния лав; возможно, что вулканическая активность Меркурия и сейчас высока.

    О химическом составе поверхностных слоев Меркурия и его недр можно пока судить лишь по косвенным данным. Отражательная способность меркурнанского реголита (поверхностного слоя) свидетельствует о том, что он состоит из таких же пород, как и лунный грунт. Средняя плотность Меркурия (5,44 г/см3) достаточно высока, и это означает, что Меркурий обладает горячим, расплавленным железоникелевым ядром, которое составляет 62% всей его массы. Радиус этого ядра близок к 1840 км, и таким образом Меркурий по своему строению напоминает Землю.

    Ядро Меркурия окружено силикатной оболочкой толщиной около 600 км, поверхностные слои которой имеют плотность, как и у Луны (3,0-3,3 г/см3). Вообще сходство этих двух космических тел настолько велико, что если бы кто-то подменил Луну Меркурием, земляне этого, вероятно, не заметили бы.

    Ближайшая к Солнцу планета Меркурий по размерам лишь немного больше Луны: его

    радиус равен 2439 км. Однако средняя плотность его (5,45 г/см3) заметно больше,

    чем у Луны, она почти такая же, как у Земли. Ускорение силы тяжести на

    поверхности 372 см/сек2, в 2,6 раза меньше земного. Период обращения вокруг

    Солнца составляет около 88 земных суток. Из-за малых угловых размеров (около 7"

    в наибольшей элонгации) и близости к Солнцу Меркурий (163) наблюдать

    трудно, и данных об этой планете получено немного.

    Радиолокация Меркурия позволила определить направление и период вращения

    планеты. В этих экспериментах Меркурий облучался длительными, почти

    монохроматическими импульсами радиоволн длиной 70 см с помощью гигантской

    антенны диаметром 300 м (Пуэрто-Рико, радиоастрономическая обсерватория Аресибо;

    см. 103). Отраженный импульс вследствие эффекта Доплера размывается по

    частоте, если планета вращается. Видимое с Земли вращение складывается из

    действительного осевого вращения и поворота, вызванного движением по орбите.

    Проводя радиолокацию при различных положениях планеты на орбите, можно

    определить как скорость, так и направление осевого вращения. Радиолокация

    Меркурия на длине волны 70 см показала, что его вращение является прямым, с

    периодом 58,6 ±0,5 суток. Это близко к 2/3 периода обращения планеты. Ось

    вращения приблизительно перпендикулярна к плоскости эклиптики.

    Опытные наблюдатели различают на диске Меркурия более или менее устойчивые

    детали. Анализ визуальных зарисовок и фотографий показывает, что наблюдаемые на

    них повторения можно объяснить периодами вращения

    где T - период обращения вокруг Солнца. Третье из этих значений в пределах

    ошибок совпадает с радиолокационным периодом. По наблюдениям деталей на диске

    отношение t/T = 2/3 выдерживается с точностью не ниже 0,01 земных суток.

    Нетрудно убедиться, что при таком отношении периодов меркурианские солнечные

    сутки (интервал от одного восхода Солнца до другого) должны длиться вдвое дольше

    меркурианского года!

    Еще недавно было распространено убеждение, что периоды вращения и обращения

    Меркурия равны и Меркурий обращен к Солнцу постоянно одной и той же стороной.

    Причина понятна: из ряда чисел (10.7) выбиралось только первое, остальные

    отбрасывались как маловероятные. Радиолокация показала ошибочность этой точки

    Американский космический аппарат "Маринер-10" передал фототелевизионные

    изображения Меркурия примерно с такой же степенью детальности, какая получается

    при изучении Луны в наземные телескопы. Прямой перелет космического аппарата от

    Земли к Меркурию требует больших затрат энергии. Эту трудность можно обойти,

    идти к Меркурию. По такой орбите и совершил перелет к Меркурию "Маринер-10". На

    164 приведено "мозаичное" изображение Меркурия, полученное с помощью

    телевизионных камер "Маринера-10". Поверхность Меркурия очень напоминает лунную.

    Первое, что бросается в глаза, - это большое число кратеров самых различных

    размеров. Однако имеются и различия. На Меркурии нет обширных морских районов,

    сравнительно гладких и более свободных от кратеров. С другой стороны, на

    поверхности Меркурия имеются такие образования, как очень высокие (в несколько

    километров) уступы, которые тянутся на расстояния в тысячи километров. Они

    свидетельствуют о том, что планета сжималась в процессе своей эволюции.

    164. "Мозаичная" (сложенная из многих отдельных изображений) фотография

    Меркурия, полученная с помощью телевизионных камер "Маринера-10".

    О подобии Луны и Меркурия говорит также сходство их фотометрических и

    поляриметрических характеристик: зависимость звездной величины и поляризации от

    фазы, отражательная способность поверхности. Как и на Луне, очень велики

    перепады температуры поверхности, измеренные по инфракрасному излучению. В

    полдень на экваторе максимальная температура достигает 700 ёК, а на ночной

    стороне падает до 100ёК,. В то же время интенсивность теплового радиоизлучения

    сантиметрового диапазона на ночной и дневной стороне мало отличается.

    Следовательно, поверхностный слой грунта на Меркурии, так же как и на Луне,

    представляет собой мелко раздробленную породу с относительно низкой плотностью

    (реголит).

    Атмосфера Меркурия имеет чрезвычайно малую плотность - концентрация не более 106

    см -3 у поверхности. Такая концентрация газа в земной атмосфере имеется на

    высоте 700 км. Состав атмосферы точно не известен; спектроскопические измерения

    на "Маринере-10" обнаружили гелий (концентрация около 104 см -3), но,

    по-видимому, должны быть и другие газы.

    Меркурий имеет собственное магнитное поле. Напряженность его вблизи поверхности

    у экватора около 0,002 э (в 300 раз меньше, чем на Земле). Ось магнитного диполя

    приблизительно совпадает с осью вращения.

    Спутников Меркурий не имеет.

    Меркурий – самая маленькая и самая близкая к Солнцу планета Солнечной системы. Древние римляне дали ему имя в честь бога торговли Меркурия, посланника других богов, носившего крылатые сандалии, за то, что планета быстрее других движется по небу.

    Краткая характеристика

    Из-за малых размеров и близости к Солнцу Меркурий неудобен для земных наблюдений, поэтому долгое время о нем было известно очень мало. Важный шаг в его изучении был сделан благодаря космическим аппаратам «Маринер-10» и «Мессенджер», с помощью которых были получены качественные снимки и подробная карта поверхности.

    Меркурий относится к планетам земной группы и находится на среднем расстоянии около 58 млн. км от Солнца. При этом максимальное расстояние (в афелии) 70 млн. км, а минимальное (в перигелии) – 46 млн. км. Его радиус лишь немного больше, чем у Луны, – 2 439 км, а плотность почти такая же, как у Земли, – 5,42 г/см³. Высокая плотность означает, что в его состав входит значительная доля металлов. Масса планеты составляет 3,3·10 23 кг, и около 80% от нее составляет ядро. Ускорение свободного падения в 2,6 раз меньше земного – 3,7 м/с². Стоит заметить, что форма Меркурия идеально шарообразная – он обладает нулевым полярным сжатием, то есть его экваториальный и полярный радиусы равны. Спутников у Меркурия нет.

    Планета обращается вокруг Солнца за 88 суток, а период вращения вокруг своей оси относительно звезд (звездные сутки) составляет две трети от периода обращения – 58 дней. Это означает, что одни сутки на Меркурии длятся два его года, то есть 176 земных дней. Соизмеримость периодов, по-видимому, объясняется приливным воздействием Солнца, которое тормозило вращение Меркурия, изначально более быстрое, пока их значения не сравнялись.

    Меркурий обладает самой вытянутой орбитой (ее эксцентриситет равен 0,205). Она значительно наклонена к плоскости земной орбиты (плоскости эклиптики) – угол между ними составляет 7 градусов. Скорость движения планеты по орбите составляет 48 км/с.

    Температура на Меркурии определялась по его инфракрасному излучению. Она изменяется в обширном диапазоне от 100 К (-173 °C) на ночной стороне и полюсах до 700 К (430 °C) в полдень на экваторе. При этом суточные колебания температуры быстро уменьшаются с продвижением вглубь коры, то есть тепловая инерция грунта велика. Отсюда был сделан вывод, что грунт на поверхности Меркурия представляет собой, так называемый реголит – сильно раздробленную породу с низкой плотностью. Из реголита также состоят поверхностные слои Луны, Марса и его спутников – Фобоса и Деймоса.

    Образование планеты

    Наиболее вероятным описанием происхождения Меркурия считается небулярная гипотеза, согласно которой планета в прошлом была спутником Венеры, а затем по какой-то причине вышла из-под воздействия ее гравитационного поля. По другой версии Меркурий сформировался одновременно со всеми объектами Солнечной системы во внутренней части протопланетного диска, откуда легкие элементы уже были отнесены солнечным ветром во внешние области.

    По одной из версий происхождения очень тяжелого внутреннего ядра Меркурия – теории гигантского столкновения – масса планеты первоначально была в 2,25 раз больше нынешней. Однако после столкновения с небольшой протопланетой или похожим на планету объектом большая часть коры и верхнего слоя мантии рассеялась в космосе, а ядро стало составлять значительную часть от массы планеты. Такая же гипотеза используется и для объяснения происхождения Луны.

    После завершения основного этапа формирования 4,6 млрд. лет назад Меркурий долгое время интенсивно обстреливался кометами и астероидами, потому его поверхность испещрена множеством кратеров. Бурная вулканическая активность на заре истории Меркурия привела к образованию лавовых равнин и «морей» внутри кратеров. По мере того, как планета постепенно остывала и сжималась, рождались другие детали рельефа: хребты, горы, холмы и уступы.

    Внутреннее строение

    Структура Меркурия в целом мало отличается от остальных планет земной группы: в центре находится массивное металлическое ядро радиусом около 1800 км, окруженное слоем мантии в 500 – 600 км, которая, в свою очередь, покрыта корой толщиной 100 – 300 км.

    Ранее считалось, что ядро Меркурия твердое и составляет около 60% от всей его массы. Предполагали, что у такой маленькой планеты ядро может быть только твердым. Но наличие собственного магнитного поля у планеты, хоть и слабого, – веский аргумент в пользу версии об ее жидком ядре. Движение вещества внутри ядра вызывает эффект динамо, а также сильная вытянутость орбиты вызывает приливный эффект, поддерживающий ядро в жидком состоянии. Сейчас достоверно известно, что ядро Меркурия состоит из жидких железа и никеля и составляет три четверти от массы планеты.

    Поверхность Меркурия практически ничем не отличается от лунной. Самое заметное сходство – это бесчисленное множество кратеров, крупных и мелких. Как и на Луне, от молодых кратеров расходятся в разные стороны светлые лучи. Однако на Меркурии нет таких обширных морей, которые к тому же были бы относительно ровными и свободными от кратеров. Еще одно заметное различие в ландшафтах – это многочисленные уступы длиной в сотни километров, образовавшиеся при сжатии Меркурия.

    Кратеры располагаются на поверхности планеты неравномерно. Ученые предполагают, что районы, более густо заполненные кратерами – более старые, а более ровные – молодые. Также наличие крупных кратеров говорит о том, что на Меркурии уже, по крайней мере, 3-4 млрд. лет не было сдвигов коры и эрозии поверхности. Последнее является доказательством того, что на планете никогда не существовало достаточно плотной атмосферы.

    Самый крупный кратер Меркурия имеет размер около 1500 километров и 2 километров в высоту. Внутри него находится огромная лавовая равнина – равнина Жары. Этот объект является самой заметной деталью на поверхности планеты. Тело, столкнувшееся с планетой и породившее такое масштабное образование, должно было быть не менее 100 км длиной.

    Снимки зондов показали, что поверхность Меркурия однородна и рельефы полушарий не отличаются друг от друга. В этом состоит еще одно отличие планеты от Луны, а также от Марса. Состав поверхности заметно отличается от лунного – в ней мало тех элементов, которые характерны для Луны – алюминия и кальция, – но довольно много серы.

    Атмосфера и магнитное поле

    Атмосфера на Меркурии практически отсутствует – она очень сильно разрежена. Ее средняя плотность равна такой же плотности на Земле на высоте 700 км. Точный состав ее не определен. Благодаря спектроскопическим исследованиям известно, что в атмосфере содержится много гелия и натрия, а также кислород, аргон, калий и водород. Атомы элементов принесены из космического пространства солнечным ветром либо подняты им с поверхности. Одним из источников гелия и аргона являются радиоактивные распады в коре планеты. Присутствие паров воды объясняется образованием воды из водорода и кислорода, содержащихся в атмосфере, ударами комет о поверхность, сублимацией льда, предположительно находящегося в кратерах на полюсах.

    Меркурий имеет слабое магнитное поле, напряженность которого на экваторе в 100 раз меньше, чем на Земле. Однако такой напряженности хватает, чтобы создать у планеты мощную магнитосферу. Ось поля почти совпадает с осью вращения, возраст оценивается примерно в 3,8 млрд. лет. Взаимодействие поля с обволакивающим его солнечным ветром вызывает вихри, происходящие в 10 раз чаще, чем в магнитном поле Земли.

    Наблюдение

    Как уже говорилось, наблюдать Меркурий с Земли довольно трудно. Он никогда не удаляется от Солнца больше, чем на 28 градусов и потому практически незаметен. Видимость Меркурия зависит от географической широты. Легче всего его наблюдать на экваторе и близких к нему широтах, поскольку здесь сумерки длятся меньше всего. На более высоких широтах Меркурий увидеть гораздо сложнее – он находится очень низко над горизонтом. Здесь наилучшие условия для наблюдения наступают во время наибольшего удаления Меркурия от Солнца или на наибольшей высоте над горизонтом во время восхода или захода Солнца. Также Меркурий удобно наблюдать во время равноденствий, когда продолжительность сумерек минимальна.

    Меркурий довольно просто разглядеть в бинокль сразу после захода Солнца. Фазы Меркурия хорошо видны в телескоп от 80 мм в диаметре. Однако детали поверхности, естественно, можно рассмотреть только в гораздо более крупные телескопы, и даже с такими инструментами это будет сложной задачей.

    Меркурий имеет фазы, похожие на фазы Луны. На минимальном расстоянии от Земли он виден как тонкий серп. В полной фазе он находится слишком близко к Солнцу, и увидеть его невозможно.

    При запуске зонда «Маринер-10» к Меркурию (1974 г.) был использован гравитационный маневр. Прямой перелет аппарата к планете требовал колоссальных затрат энергии и был практически невозможен. Эту трудность обошли с помощью коррекции орбиты: сначала аппарат прошел мимо Венеры, и условия пролета мимо нее были подобраны так, что ее гравитационное поле изменило его траекторию ровно настолько, что зонд долетел до Меркурия без дополнительных трат энергии.

    Есть предположения, что на поверхности Меркурия существует лед. В его атмосфере присутствует водяной пар, который вполне может находиться в твердом состоянии на полюсах внутри глубоких кратеров.

    В XIX веке астрономы, наблюдая за Меркурием, не могли найти объяснения его орбитальному движению, используя законы Ньютона. Вычисленные ими параметры различались с наблюдаемыми. Чтобы объяснить это, была выдвинута гипотеза о том, что на орбите Меркурия находится еще одна невидимая планета Вулкан, воздействие которой и вносит наблюдаемые несоответствия. Настоящее объяснение было дано спустя десятилетия с помощью общей теории относительности Эйнштейна. Впоследствии имя планеты Вулкан было дано вулканоидам – предполагаемым астероидам, находящимся внутри орбиты Меркурия. Зона от 0,08 а.е. до 0,2 а.е. гравитационно стабильна, поэтому вероятность существования таких объектов довольно высока.